定焦准直器,FC/APC接头


  • Mates with FC/APC Connectors
  • Simplifies Collimation of Output from Single Mode Fiber
  • Collimated Beam Diameters Ranging from 0.63 mm to 4.05 mm
  • Models Aligned at 13 Key Wavelengths from 405 nm to 4.55 µm

F240APC-A

543 nm, Focal Length: 7.86 mm
Shown with Patch Cable

F220APC-1064

1064 nm, Focal Length: 11.17 mm

Back

Front

Fixed Focus Collimators Contain
One Factory-Aligned Aspheric Lens

Related Items


Please Wait
Mounted Fiber Collimator
Click for Details

KAD11F可调转接件将光纤准直器安装在LM1XY平移安装座。
Fixed Focus
Collimation Packages
SMA905
FC/PC
FC/APC
视频教程演示了对准两个光纤准直器的方法,以将一个的准直输出光高效耦合至另一个。

特性

  • FC/APC光纤准直器(2.2 mm宽键),用于单模光纤跳线
  • 对准波长从405 nm到4.55 µm(详见右表)
  • 准直光束直径从0.63 mm到4.05 mm,取决于波长
  • 每个准直器都在工厂对准
  • 简化光纤耦合探测系统
  • 无磁不锈钢外壳
  • 兼容窄键和宽键FC/APC插头
  • 可定制波长等选项,详情联系技术支持techsupport-cn@thorlabs.com

这些光纤准直器经过预对准,用于准直FC/APC接头光纤的输出光,并提供衍射极限性能。这些光纤准直器没有运动部件,结构紧凑,方便集成到已有的装置中。因为非球面透镜有色差,其有效焦距(EFL)与波长有关。设计波长是指与理想光束发散角对应的波长(更多信息,请看发散角曲线计算标签)。某些重要设计波长的准直器可选不同准直光束直径的版本。请点击右表中的链接选择波长,跳转到相应页面了解详情。

非球面透镜经过出厂对准,在与特定单模光纤跳线连接时能够准直设计波长。此外,非球面透镜镀两面都镀有增透膜,最大限度地减少表面反射(请查看增透膜曲线标签)。对于某些应用,准直器也能用于增透膜波长范围内的其它波长。请参考每种准直器的理论发散角曲线确定是否适合您的应用。这些准直器的工作温度范围从-40°C到93°C。请注意,这些准直器不能在真空中使用。如需定制对准波长、工作温度或真空兼容性请联系技术支持techsupport-cn@thorlabs.com

我们建议将准直器搭配我们的单模光纤跳线一起使用。为了提高性能,我们建议使用镀增透膜的单模光纤跳线。这些光纤跳线的端面镀有增透膜,能在光纤和自由空间界面上增加透过率并且改善回波损耗。请注意只有和单模光纤一起使用时才能保证性能规格。

为了安装这些光纤准直器,我们推荐使用我们的准直器安装转接件,包括可调俯仰和偏转的可调准直器安装转接件。除了Ø1/2英寸和Ø1英寸无螺纹的版本之外,还可以选择具有SM05(0.535"-40)、RMS(0.800"-36)或SM1(1.035"-40)外螺纹的版本。带M12x0.5外螺纹的准直器可以直接安装在我们的CP1M12(/M)笼板中,从而集成在我们的30 mm笼式系统中。

中红外准直器
对于对准波长为3.45 µm和4.55 µm的准直器,我们推荐使用斜角端面抛光的氟化物光纤跳线;这些准直器包含具有严格公差的陶瓷套管,在插入过程中保护氟化物光纤末端,并改善指向稳定性。虽然这些准直器在特定波长对准,但是它们在宽波长范围内发散角较小,因此也可用于准直增透膜范围内的其它波长。请参考每种准直器的理论发散角曲线确定是否适合您的应用。

替代选项
我们也提供一系列可调FiberPort准直器,适合宽范围波长使用。这些是紧凑可调的光纤耦合器。关于其它准直和耦合选项,请参考准直器选择指南标签,或者联系技术支持techsupport-cn@thorlabs.com

Quick Links to Stocked Wavelengthsa
405 nm532 nm543 nm633 nm780 nm850 nm980 nm1064 nm1310 nm1550 nm2 µm3.45 µm4.55 µm
  • 这些准直器可以根据要求进行定制对准,以在其他波长下工作;咨询请联系技术支持techsupport-cn@thorlabs.com
Coating Information
Coating Designation405AaBa1064CaDE
Coating Range395 - 415 nm350 - 700 nm or 400 - 600 nm600 - 1050 nm or 650 - 1050 nm1050 - 1075 nm1050 - 1620 nm or 1050 - 1700 nm1.8 - 3.0 µm3 - 5 µm
Reflectance< 0.25% @ 405 nmRavg < 0.5% within Coating RangeRavg < 0.5% within Coating Range< 0.25% @ 1064 nmRavg < 0.5% within Coating RangeRavg < 1.0% within Coating RangeRavg < 1.0% within Coating Range
  • 请在下面的规格表中查看特定准直器的镀膜范围。
θDivergence Angle
DMode-Field Diameter (MFD)
fFocal Length of Collimator

发散角(单位:度)

divergence formula

D和f必须使用相同单位。

发散角对比

如果光纤输出光具有高斯强度分布,可以使用右边的公式估算发散角。该公式非常适合单模光纤,但会低估多模光纤的发散角,因为从多模光纤输出不是高斯强度分布。

下图显示了在非设计波长下使用准直器时的理论发散值曲线。例如,如果您需要将光纤出射的700 nm光准直成~1.5 mm直径的光束,可使用F240APC-780准直器(下面F240曲线图中的"-780'曲线),但是比780 nm设计波长下具有更高的发散角。下方也提供每个准直器的理论发散角曲线和原始数据。若需定制波长的准直器,请联系技术支持techsupport-cn@thorlabs.com

发散角的理论估算

下面曲线是在特定光纤输入和高斯强度分布条件下,每种准直器在设计波长下光束直径和传播距离的模拟值。设计波长和光纤列于每个曲线图的标题中。

Divergence for 405 nm collimators
Click to Enlarge
At 405 nm with S405-XP Fiber
Divergence for 543 nm collimators
Click to Enlarge
At 532 nm with 460HP Fiber
Divergence for 543 nm collimators
Click to Enlarge
At 543 nm with 460HP Fiber
Divergence for 633 nm collimators
Click to Enlarge

At 635 nm with SM600 Fiber
Divergence for 780 nm collimators
Click to Enlarge
At 780 nm with 780HP Fiber
Divergence for 850 nm collimators
Click to Enlarge
At 850 nm with 780HP Fiber
Divergence for 980 nm collimators
Click to Enlarge
At 980 nm with SM980-5.8-125 Fiber
Divergence for 1064 nm collimators
Click to Enlarge
At 1064 nm with SM980-5.8-125 Fiber
Divergence for 1310 nm Collimators
Click to Enlarge
At 1310 nm with SMF-28-J9 Fiber
Divergence for 1550 nm collimators
Click to Enlarge
At 1550 nm with SMF-28-J9 Fiber
Divergence for 2000 nm collimators
Click to Enlarge
At 2000 nm with SM2000 Fiber
Divergence for 3450 nm collimators
Click to Enlarge
At 3.45 µm with ZrF4 Fiber
Divergence for 4950 nm collimators
Click to Enlarge
At 4.55 µm with InF3 Fiber

发散角的理论近似值

规格表中列出的光束发散全角是与光纤准直器相关的理论计算值。只要从光纤出射的光具有高斯强度分布,使用以下公式就可以在理论上估算该发散角。因此,该公式适用于单模光纤,但它会低估多模(MM)光纤的发散角,因为从多模光纤输出光不是高斯强度分布。

发散全角(用度表示)通过下式得出

Divergence Angle Equation

其中,MFD是模场直径,f是准直器的焦距。(注意:MFDf在该算式中的单位必须相同)。

示例

利用F220FC-A准直器(f ≈ 11.0 mm;并不精确,因为设计波长为543 nm)准直从460HP光纤(MFD = 3.5 µm)中出射的515 nm的光束时,发散角大概为

θ ≈ (0.0035 mm / 11.0 mm) x (180 / pi) = 0.018°.

使用F220FC-A准直器测量光束发散角时,使用460HP光纤和543 nm光,结果是0.018°。

输出光束直径的理论近似值

输出光束直径可以根据下式估算

Output Beam Diameter Equation

其中,λ是所用光的波长,MFD是模场直径,f是准直器的焦距。(注意:MFDf在该算式中的单位必须相同)。

示例

F240FC-1550准直器(f = 8.18 mm)配合P1-SMF28E-FC-1光纤跳线(MFD = 10.4 µm)和1550 nm的光一起使用时,输出光束直径为

d ≈ (4)(0.00155 mm)[8.18 mm / (pi · 0.0104 mm)] = 1.55 mm。

最大束腰距离的理论近似值

最大束腰距离,是指为了维持准直,束腰可以距离透镜最远的距离,近似为

Max Waist Distance Calculation

其中,f是准直器的焦距,λ是所用光的波长,MFD是模场直径。(注意:MFDf在该算式中的单位必须相同)。

示例

F220FC-532准直器(f = 10.9 mm)配合P1-460B-FC-1光纤跳线(MFD ≈ 4.0 µm;计算的近似值)和532 nm的光一起使用时,最大束腰距离近似为

zmax ≈ 10.9 mm + [2 · (10.9 mm)2 · 0.000532 mm] / [pi · (0.004 mm)2] = 2526 mm。

实验经验

请向下滑动了解我们在设置实验装置时遵循的做法。

  • 光纤准直器用于单模光纤的对准和耦合
  • 光纤准直器:配合转接件使用的技巧

点击这里以获取有关实验经验和设备的更多信息。

 

光纤准直器用于单模光纤的对准和耦合

视频教程演示了对准两个光纤准直器的方法,以将一个的准直输出光高效耦合至另一个。

插入光纤器件的两个准直器提供自由空间光。从第一根光纤中出射的高发散光经过第一个准直器输出自由空间光束,此光束以几乎恒定的直径传输到第二个准直器。然后此自由空间光束通过第二个准直器并耦合到第二根光纤中。有些准直器,包括此次演示中使用的这对准直器,可以配合光纤使用,并直接兼容光纤接头。

理想情况下,从第一根光纤出射的光可以100%耦合到第二根光纤中,但实际上,由于反射、散射、吸收以及错位(光束对不准)等影响,这个过程总会损耗一些光。一般而言,错位是其中最大的损耗源,但可以通过采用本视频中演示的对准及稳定技巧最大程度地减少损耗。

此演示中,第一根光纤是单模的。测量的是入射在第二个准直器上的光功率,以及第二根光纤输出的功率。当第二根光纤是纤芯直径50 µm的多模光纤时,对准的结果是在光纤输出端测得的功率为入射在第二个准直器上功率的91%,而当第二根光纤换成单模光纤时,这个值变成了86%。视频中还讨论了有关准直器设计差异及其对准直光束特性的影响等。

如果你想了解更多其他实验室使用建议、技巧和方法,我们推荐其他视频教程。此外,我们的网络研讨会提供了我们不同产品的实用和理论介绍。

演示中使用的组件
光纤耦合激光器调整架光纤接头转接件
(用于功率探头)
FC/PC单模光纤光纤跳线缠绕盘
三合透镜光纤准直器功率探头功率计表头混合接头单模光纤2英寸接杆
转接件 
(调整架转接准直器)
SM1螺纹转接件
(用于功率探头)
光纤接头清洁器阶跃折射率多模光纤0.5英寸接杆支架

Date of Last Edit: April 21, 2021

 

光纤准直器:配合转接件使用的技巧

Epoxy adapters into mounts to preserve alignment when exchanging optical connectors.
Click to Enlarge

图1:上面显示的元件通过螺纹接口接合。由于旋松光纤接头可能会无意间弄松其他元件之间的连接,因此Thorlabs建议把环氧树脂涂在另外两个接口上,将其固定。

光纤准直器通常用于将光纤耦合光源的光引入光学装置中。Thorlabs提供多种光纤准直器,有些只带光滑的套管(比如三合透镜准直器),而有些在套管的末端还有公制螺纹(比如非球面透镜准直器)。

对于这两种准直器,Thorlabs一般都建议搭配使用带尼龙顶丝的转接件,通过双线接触固定套管。

我们也提供用于外螺纹元件的转接件(AD1109F),可以将光纤准直器拧入安装座。

但是,使用这些转接件会堆砌螺纹接口(螺纹光纤接头、螺纹准直器和螺纹转接件)。结果,旋松光纤接头可能会无意间弄松另一个螺纹接口,从而在搭建过程中产生未知的不稳定源。

因此,Thorlabs建议,如果确定使用这种安装配置,可以通过环氧树脂将带螺纹的光纤准直器粘在螺纹安装座中。

图1显示了组装顺序和涂环氧树脂的位置。

Date of Last Edit: Dec. 4, 2019


Posted Comments:
施 议焕  (posted 2023-08-02 22:58:15.96)
请问,我们对这个产品有几个问题 1. 这个产品如果反向使用的话是否可以作为一个聚焦透镜使用,用于将空间光聚焦到光纤上? 2. 有这个产品全部波段的增透膜曲线的数据吗?我们希望获得980nm激光对这个产品的透射率 3.或者你们有这个产品未镀膜片的版本吗?希望对2.8 um和0.98 um的激光进行聚焦
cdolbashian  (posted 2023-08-04 11:24:59.0)
1. Can this product be used as a focusing lens if used in reverse to focus spatial light onto an optical fiber? 2. Do you have the data of AR coating curves for all bands of this product? We hope to obtain the transmittance of 980nm laser to this product 3. Or do you have an uncoated version of this product? Want to focus 2.8 um and 0.98 um laser" 1. Indeed this component can take a collimated input and focus the light to a fiber. 2. We have sent you additional, extended, data 3. We have reached out to you to discuss this.
user  (posted 2023-04-05 20:19:08.69)
Dear Sir/Madam, We have F230APC-1310 collimators and I want to create free space with these collimators. The distance between collimators is 12.5 cm and light source is BOA1130-P. Unfortunately, I cannot exceed 50% coupling efficiency. For example, My total power is 9.5 mW. I cannot exceed 4.2 mW. In addition, the back reflection from receiver collimator, is clearly seen near the top of the transmitter collimator's aspheric lens. I got the highest power with this setup. When I try to align back reflection, I get nothing. What is my problem and how can I solve this?
cdolbashian  (posted 2023-04-26 09:27:31.0)
Thank you for reaching out to us with this inquiry. Before I was able to post this, you and I exchanged some emails, and it seems like the inclusion of appropriate kinematic control assisted you in achieving ~80% coupling.
Cristian Tong  (posted 2023-01-04 05:50:07.073)
Hello, Can the F260APC-780 collimator be used to couple a free-space beam into the fiber? and, Can this collimator adapted with PM fibers? Thank you
cdolbashian  (posted 2023-01-10 02:27:31.0)
Thank you for reaching out to us with this inquiry! These can be used to couple a free space beam into the fiber though since everything is fixed, you may have trouble getting greater than 50% coupling efficiency. While you can use it with a PM fiber, you might not have well-reproducible results with regards to alignment of one of the polarization axes, as we use wide-key adapters on our fiber collimators for ease of use with any FC-style fiber.
Arun Jana  (posted 2022-12-10 15:21:47.333)
Dear Sir/Madam, is this output from single-mode polarization maintaining fiber? looking forward.... Thanks.
cdolbashian  (posted 2022-12-15 01:48:28.0)
Thank you for contacting us with this inquiry. These collimators are housings for lenses which are nominally isotropic materials. As such we would assume there would be no change of the polarization state while passing through.
Emirhan Tosun  (posted 2022-11-30 22:03:42.45)
Dear Sir/Madam I have products with code F280APC-C , AC254-030-C-ML. Can I learn the damage threshold values? Thanks in advance. Best rigards. Emirhan Tosun
jgreschler  (posted 2022-12-06 01:27:59.0)
Thank you for reaching out to Thorlabs. Unfortunately we do not currently have a damage threshold spec for that item.
user  (posted 2022-06-24 21:31:54.617)
I would like to use F240APC-C with POLARIS-K05T6, which adapter should I use? Thanks in advance,
jdelia  (posted 2022-06-30 04:31:21.0)
Thank you for contacting Thorlabs. I have contacted you directly regarding your application.
Jan Fait  (posted 2021-11-04 04:27:03.92)
Please, is the collimator F240APC-532 suitable for coupling elliptic beam (532 nm, 1.5 mm x 3.5 mm) to a single mode optical fiber (e.g. P3-460B-FC)? Or is it better to use collimator with short focal length (F110APC-532) to have very small focal spot? Thanks in advance, Jan
YLohia  (posted 2021-12-23 11:24:10.0)
The shorter focal length will, by definition, produce a smaller beam size for a gaussian beam when focussed. The main consideration you should be wary of is your NA match with the fiber. You will ideally want your NA_fiber > NA_lens+laser, where the NA of the laser would be D/(2*f), where D is the incoming beam diameter, and f is the focal length. Depending on your fiber and the beam diameter (semi major axis of elliptical beam) at the lens surface, you should pick the appropriate lens with the smallest focal length to satisfy your coupling needs. Ideally you would want to go for a fiberport coupling solution as it has multiple degrees of freedom, which are necessary to get optimal coupling to an SM fiber, due to their core sizes being on the same order as the beam waist.
Phani Kumar  (posted 2021-09-25 20:51:15.293)
Kindly clarify if the Thorlabs F260APCA collimator is compatible with Polarization-Maintaining FC/APC Fiber Optic Patch Cables.
YLohia  (posted 2021-10-11 02:51:07.0)
Thank you for contacting Thorlabs. Yes, our FC/APC fiber collimators, such as the F260APC-A, are compatible with FC/APC fiber patch cables (including PM APC cables).
wu chao  (posted 2021-05-17 03:18:06.38)
请问准直器的损伤阈值是多少
YLohia  (posted 2021-05-19 01:34:39.0)
Thank you for contacting Thorlabs. An applications engineer from our team in China (techsupport-cn@thorlabs.com) will reach out to you directly.
user  (posted 2020-06-18 16:43:08.663)
To whomever it may concern, I am concerned about the beam profile from the collimator. Is there information on the truncation of the beam at the lens?
nbayconich  (posted 2020-06-23 02:26:04.0)
Thank you for your feedback, our fixed focus collimators should not truncate your beam as long as the numerical aperture of the fiber is less than the NA of the collimation package.  It would be best to have more information about your fiber first before suggesting a particular collimation package.  I will reach out to you directly to discuss your application.
Filippo Piffaretti  (posted 2020-04-22 19:00:34.933)
Dear Thorlabs, In my system (915nm) I do need a fixed APC collimator but with a lens with a focal lens of 2mm as one of your adjustable collimator. In alternative, can you provide ans adjustable collimator with Focal lens of 2mm and a APC connector! With the current PC I loose more than 30% of the laser beam. Thanks in advance, Filippo
YLohia  (posted 2020-04-24 08:37:57.0)
Hello Filippo, thank you for contacting Thorlabs. We offer the PAF2-2B FiberPort collimator with 2 mm focal length, which can be used with FC/APC connectors. This unit will allow 4.4 degrees worth of adjustment on the lens. Please note that after correcting for the 4 degrees for the tilt from APC, you will only have 0.1 mm worth of travel. I have posted your request for APC fixed collimator options for shorter focal lengths on our internal engineering forum for further consideration as a future product.
Leonardo de Melo  (posted 2020-03-18 10:13:06.763)
I see the transmission listed for the C20APC-C collimator listed, but not for the F280APC-C or the TC18APC-1064. Can you please provide those?
YLohia  (posted 2020-03-18 10:40:28.0)
Thank you for contacting Thorlabs. The F280APC-C uses the 354280-C lens and its transmission can be found here : https://www.thorlabs.com/images/popupimages/354280_plt.gif. I will reach out to you directly with information regarding the TC18APC-1064.
Vasliliy Voropaev  (posted 2019-12-12 12:24:51.21)
Hello, could you please write the material and thickness of the lens in the collimator F240APC-1550? We want to calculate ultrashort pulse broadening in this collimator.
YLohia  (posted 2019-12-12 01:11:18.0)
Hello, thank you for contacting Thorlabs. The material and thickness of the lens used in the F240APC-1550 can be found here : https://www.thorlabs.com/_sd.cfm?fileName=15681-E0W.pdf&partNumber=A240-C
Pierre G  (posted 2019-09-26 11:56:16.037)
Hello, What is the material and/or index@532nm for the lense of the F110APC-532 collimator ? Thanks.
YLohia  (posted 2019-09-26 12:10:54.0)
Hello, thank you for contacting Thorlabs. A slightly modified version of our 355110-A lens is used in this collimator and its specs can be found here (https://www.thorlabs.com/_sd.cfm?fileName=TTN021132-E0W.pdf&partNumber=355110-A). The lens is made of D-ZLAF52LA. We also share the Zemax file for the F110APC-532 on its product page, which can be used to set up ray simulations.
Jerry Liu  (posted 2019-08-28 18:58:34.56)
Dear Madam or Sir, Why is the fiber connection part of the collimator is made slightly tilted? what's the purpose of it? And will it affect the transmission of different linear polarization?
YLohia  (posted 2019-08-28 12:44:49.0)
Hello, thank you for contacting Thorlabs. This connector has the same basic design as the flat FC/PC connector, but is tilted at 4 degrees such that it can accept an FC/APC fiber end which is polished at an 8 degree angle. This “Angled Physical Contact” (APC) interface prevents light reflected at the fiber-fiber junction from traveling back up the fiber. FC/APC connectors only mate properly with other FC/APC connectors. Mating FC/APC with any other connector results in high insertion loss. These connectors minimize back reflections but have a higher insertion loss than their FC/PC counterparts. Using an APC connectorized fiber with an APC collimator will not cause any additional polarization affects.
v.t.tenner  (posted 2018-08-31 10:30:31.257)
I measured the divergence and beam profile of a F240APC-532, using 520nm light and a P3-488PM-FC-2 and a WinCamD beam profiler. I find a 5x higher divergence than the specs, and a focus in the beam. I repeated this measurements with a non-pm fiber for 633nm and find comparable results. How large are all the tolerances and how likely it is that a different fiber coupler will give values that are so much out of spec?
nbayconich  (posted 2018-09-06 04:59:36.0)
Thank you for contacting Thorlabs. My apologies that this collimator did not meet our specifications, this is not typical of these collimators. We can of course take back this unit and replace it. I will contact you directly with more information.
danielpwhite1993.dw  (posted 2018-06-25 15:07:46.49)
Can I use the same F240APC-532 to collimate 405nm and 532nm from SM400 fibre?
YLohia  (posted 2018-06-25 10:10:32.0)
You could use the same collimator, however, the level of collimation and beam diameters for the two wavelengths will be different as can be seen here: https://www.thorlabs.com/images/TabImages/Divergence_F240-532_780.gif. For a truly achromatic performance, we recommend using reflective collimators that can be found on this page: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4093.
jchg2758  (posted 2017-10-16 18:44:22.977)
Can I used this receptacle collimator to PM fiber? It is denoted as for single mode fiber but I wanna know how it is designed for single mode (only?).
tfrisch  (posted 2017-10-17 04:06:24.0)
Hello, thank you for contacting Thorlabs. You can use these collimators in reverse to couble light into PM fiber as it is also single mode. The input polarization will need to be linear and aligned to the PM axis of the fiber. I will contact you directly to discuss this.
andreas.rohrbacher  (posted 2017-02-02 03:28:02.83)
Hi. What are the temperature specs (operating and storage) for the F240APC-1064? Could the part be temp-cycled +-30 °C from ambient temperature (25°C) without damage to i.e. the lens?
tcampbell  (posted 2017-02-06 12:17:50.0)
Response from Tim at Thorlabs: thank you for your feedback. The operating temperature range for these collimators is -40 °C to 93 °C. Yes, the collimators can operate in the range of 25 +/- 30 °C.
jeremy.saucourt  (posted 2016-05-26 11:24:35.43)
Hi. I have several F220APC-1064 collimators placed on kinematic mounts. I use one to collimate the output of a PM980-XP fiber. Then, I use a second one to inject this collimated beam in another PM980-XP fiber. Before the second collimator, I measure the beam power to be 12 mW (generated by a 1064 nm laser diode). After it, without connecting the fiber to be injected, I measure a 11.8 mW power meaning that alignment is correct. After inserting a 1m welding-free PM980-XP cable and adjusting kinematic knobs for maximal injection, I can only measure up to 4.1 mW, meaning that a maximum of 35 percents of the energy is injected in the fiber. The two collimators are separated by about 5 centimeters. Any idea on why I cannot inject up to about 90% of the energy on the fiber ?
besembeson  (posted 2016-05-26 03:47:04.0)
Response from Bweh at Thorlabs USA: The coarse alignment you did helps to center the collimators roughly. After the fiber is inserted, you need to use the kinematic adjustments (hopefully you have at least one) of the mount (s) that hold the collimators to optimize your coupling efficiency. Remember you are creating a spot of under 10um to couple to the fiber so any small misalignment is critical.
mesmail  (posted 2015-03-04 08:30:35.033)
Hi. I have bought two F280APC-1550 collimators with two P3-SMF28EAR-2 patch cables. I did FSO setup (50 cm distance) with very good alignment and transmitted 30mW using one collimator. When the path cable is not connected to the receiver collimator, I can see the received beam from the collimator output using a viewing card which means the allignment is good. However, when I connected the patch fiber to the receiver collimator, I get very low (in nW) measured using a power meter. Is this because due to the separation distance? any suggestions?
jlow  (posted 2015-03-24 11:34:50.0)
Response from Jeremy at Thorlabs: It seems that the 2nd collimator is slightly misaligned. It should be placed on a kinematic mount to optimize the alignment. I will contact you directly to discuss more about this.
rolland  (posted 2014-12-01 18:22:58.51)
Dear Sir or Madam, I am interested in the collimator F280APC-B to be used with a ~2 mW SLED output at 670 to 680 nm. For our application, the collimator would be placed in a moderate vacuum, of the order of 10^{-6} mbar. Is the collimator vacuum compatible in this condition ? Cheers, L. Rolland
jlow  (posted 2014-12-11 01:33:23.0)
Response from Jeremy at Thorlabs: These collimators are not vacuum compatible. We can possibly make a custom version. I will contact you directly too discuss about this.
clesch  (posted 2014-06-28 16:24:59.027)
Dear Madam or Sir, I'd like to know if one can cause any harm by connecting one of your SM/PC fibers to one of the "Fixed Focus Collimation Packages: FC/APC Connectors" (e.g. F260APC-B) or - vice versa - connecting a SM/APC fiber to a collimation package of FC/PC (e.g. F240FC-B) standard. Thanks for your information in advance
jlow  (posted 2014-08-05 02:33:01.0)
Response from Jeremy at Thorlabs: Mismatching the connector type will cause the beam to hit the lens at an angle and distort the output beam.
ako.chijioke  (posted 2013-04-22 18:49:05.82)
which is recommended for 633nm, f240APC-A or f240APC-B? The latter is aligned at 633 nm but has AR coating that starts at 650 nm. Thanks
tcohen  (posted 2013-04-25 16:32:00.0)
Response from Tim at Thorlabs: For your 633nm source, it would be preferable to use the F240APC-B for the best collimation performance. The performance of the coating will still be suitable at this wavelength. I will contact you to continue this discussion.
koreancarsg  (posted 2013-03-20 12:44:16.377)
am looking for a collimator for Fiber coupled superluminescent diode, 1mW @ 680nm. However found closes available is 633nm. Need advice which collimator is suitable?
tcohen  (posted 2013-03-21 16:14:00.0)
Response from Tim at Thorlabs: We can custom align these collimators to a desired center wavelength. However, as this has a refractive (aspheric) optic it will have chromatic focal shift over the bandwidth of your superluminescent diode and will therefore have poorer collimation quality as you deviate from your center wavelength. Depending on your performance requirements, this may be acceptable. Alternatively, you could look to use a reflective collimator. I will contact you to discuss your setup further.
marshabr  (posted 2012-11-29 11:01:09.31)
I purchased 4 of the F240APC-1550 collimators. They appear to be focused incorrectly. The far field spot (8 meters) can be reduced in size by about 1/2 if I loosen the nut and pull the fiber away from the lens. The coupling between two collimators or from one collimator to itself via a mirror can be improved by 2x or more by adjusting the fiber position. I tried several different FC/APC connectors from different manufacturers, with similar results. Is this a known problem with these collimators? How do you determine the focus point when assembling these collimators?
jlow  (posted 2012-08-09 16:02:00.0)
Response from Jeremy at Thorlabs: Thank you for your feedback. I have forwarded this to our engineering group to look into. One possible drawback with the S1TM12 is that there's no hard stop for the collimator to push against and therefore might not be suitable in the long run.
shaun.johnstone  (posted 2012-08-08 01:21:25.0)
Instead of suggesting the AD12F adapter for the F240APC-780 product, I would suggest using the S1TM12 adapter. This way your fiber collimator is held nicely by the thread on the end of itself, and not by a grub screw (which is not a repeatable mounting scheme).

光纤准直器选择指南

点击准直器类型或图片查看关于每种准直器的更多信息。

Type Description
Fixed FC, APC, or SMA Fiber CollimatorsFixed SMA Fiber Collimator定焦光纤准直器经过预对准,用于准直FC/PC、FC/APC或SMA接头光纤的输出光。每个准直器都经过出厂对准,在波长范围从405 nm到4.55 µm内提供衍射极限性能。虽然这些准直器可在非设计波长处使用,但是由于非球面透镜存在色差,有效焦距会随波长变化而变化,因此它们只有在设计波长处才能提供最佳性能。
Air-Spaced Doublet, Large Beam CollimatorsAir-Spaced Doublet Fiber Collimator对于大光束直径(Ø5.3到Ø8.5 mm),Thorlabs提供空气隙双合透镜准直器,其接头可选FC/PC、SMA和FC/APC。这些准直器都经过出厂预对准,用于准直FC或SMA接头光纤输出的激光光束,在设计波长处提供衍射极限性能。
Triplet CollimatorsTriplet Fiber CollimatorThorlabs的高质量三合透镜光纤准直器使用空气间隔三合透镜,与非球面透镜准直器相比,能够提供更好的光束质量性能。三合透镜设计像差小,准直光束的M2因子更接近于1 (高斯光)、发散角更小且波前误差更小。
Achromatic Collimators for Multimode FiberTriplet Fiber CollimatorThorlabs的高NA消色差准直器将弯月透镜与消色差双合透镜配对,在可见光谱范围内实现高性能、低球面像差。这些准直器设计用于高NA多模光纤,非常适合光遗传学和光纤光度学应用。
Reflective CollimatorsReflective Fiber CollimatorThorlabs的金属膜反射式准直器基于90°离轴抛物面反射镜。反射镜和透镜不同的是,反射镜焦距在宽波长范围内保持恒定。由于这种固有属性,抛物面反射镜准直器不需要调节就能使用各种波长的光,这使它们成为多色光应用的理想选择。我们的反射式准直器非常适合用于单模光纤,但不建议用于耦合到单模光纤。我们还提供一种紧凑型镀有保护层银膜的反射式准直器,直接兼容我们的16 mm笼式系统。
FiberPortsFiberport Fiber CollimatorFiberPort是一种紧凑的、超稳定的微定位器,为FC/PC、FC/APC或SMA接头光纤的准直或耦合提供了一个简单易用而且稳定的平台。FiberPort可用于单模、多模或保偏光纤,而且可安装到接杆、平台、位移台或激光器上。内置的非球面透镜或消色差透镜有三种增透膜可选,并且有5个对准调节自由度(3个平移和2个俯仰)。FiberPort的紧凑构造和长期对准稳定性使其成为光纤耦合、准直或OEM系统集成的理想选择。
Adjustable Fiber CollimatorsAdjustable Fiber Collimator可调焦点准直器设计用于准直FC/PC或FC/APC光纤的输出光,它们包含一个镀增透膜的非球面透镜。通过调节非球面透镜与光纤端面之间的距离,可以补偿焦距变化或者在需要的波长和距离重新准直。
Large Beam Fiber Collimatorslarge beam collimatorsThorlabs的消色差光纤准直器设计有效焦距为20 mm、40 mm或80 mm,具有三种不同波长范围,可选FC/PC或FC/APC接头版本。相比非球面透镜准直器,空气隙四透镜设计产生极佳光束质量(M2接近1),而且波前误差更小。这些准直器使用非常灵活,可以用作自由空间准直器或耦合器。它们也可以很远距离配对使用,从而在进入第二个准直器前控制自由空间光束,也可以在远距离通信应用中使用。
Zoom Fiber CollimatorsZoom Fiber Collimator变焦光纤准直器可以在维持光束准直的同时,在6 mm到18 mm范围之间调节焦距。因此可以在不影响准直的情况下改变光束的尺寸。这种通用的准直器相比固定光纤准直器使用更节省时间,具有非常广泛的应用。准直器的接头可选FC/PC、FC/APC或SMA905,增透膜可选三种不同波长范围。
Pigtailed CollimatorsPigtailed Fiber Collimator我们带尾纤的准直器配有1 m长的单模或多模光纤,其光纤和镀增透膜的非球面透镜稳定地固定在不锈钢外壳内,而且有六个准直波长可选:532、830、1030、1064、1310或1550 nm。虽然这些准直器可以用于增透膜波长范围内的任意波长的光,但是偏离设计波长会增加耦合损耗。
Polarization Maintaining Pigtailed Collimators我们的保偏尾纤准直器带有1米长的光纤,所含镀增透膜的非球面透镜相对光纤预对准,用于准直六种波长:532 nm、830 nm、1030 nm、1064 nm、1310 nm或1550 nm。也可以定制波长和接头。沿外壳的刻线平行于慢轴。因此,耦合偏振光时可以用作参考。虽然可以在镀膜范围内的任意波长下使用准直器,但耦合损耗会随着与设计波长的偏离而增加。
GRIN Fiber CollimatorsGRIN Fiber CollimatorThorlabs提供渐变折射率(GRIN)光纤准直器,用于630到1550 nm范围之间的多个波长,光纤可选FC接头、APC接头或无接头的版本。我们的GRIN透镜准直器的通光孔径是Ø1.8 mm,并且镀有增透膜以减少进入光纤的背向反射光,用于耦合到标准的单模光纤或渐变折射率多模光纤。
GRIN LensesGRIN Lens这些渐变折射率(GRIN)透镜镀有增透膜,适用于光纤对光纤之间的自由空间光学系统的耦合应用,设计波长可选630、830、1060、1300或1560 nm。它们也可用于将激光二极管的输出光耦合到光纤中、将光纤的输出光耦合到探测器中或者用于准直激光。我们的GRIN透镜设计与我们的带尾纤的玻璃插芯和GRIN/插芯套管一起搭建定制准直器。
Back to Top

FC/APC光纤准直器,405 nm

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull Angle DivergencedTheoretical
Divergence
NAFocal LengtheHousing Outer
Diameterf

External Threading
F671APC-405405 nm395 - 415 nm
Ravg < 0.25%
0.63 mm3.56 mm0.05° +0.01 / -0.00°Divergence
Raw Data
0.604.02 mm11 mmM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用S405-XP光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 1/e2发散全角理论值;使用S405-XP光纤在对准波长处计算
  • 在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F671APC-405 Support Documentation
F671APC-405FC/APC光纤准直器,405 nm,f=4.02 mm,NA=0.60
¥2,139.00
2 Weeks
Back to Top

FC/APC光纤准直器,532 nm

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergencedTheoretical
Divergence
NAFocal LengtheHousing Outer
Diameter
External
Threading
F110APC-532532 nm350 - 700 nm
Ravg < 0.5%
1.14 mm5.85 mm0.03 +0.01 / -0.00°Divergence
Raw Data
0.386.09 mm11 mmfM11 x 0.5
F240APC-532532 nm350 - 700 nm
Ravg < 0.5%
1.48 mm6.96 mm0.03 +0.01 / -0.00°Divergence
Raw Data
0.517.86 mm12 mmgM12 x 0.5
F220APC-532532 nm350 - 700 nm
Ravg < 0.5%
2.1 mm10.72 mm0.02 +0.01 / -0.00°Divergence
Raw Data
0.2510.90 mm11 mmfM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用460HP光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 1/e2发散全角理论值;使用460HP光纤在对准波长处计算
  • 在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F110APC-532 Support Documentation
F110APC-532FC/APC光纤准直器,532 nm,f=6.09 mm,NA=0.38
¥2,139.00
2 Weeks
F240APC-532 Support Documentation
F240APC-532FC/APC光纤准直器,532 nm,f=7.86 mm,NA=0.51
¥2,139.00
2 Weeks
F220APC-532 Support Documentation
F220APC-532FC/APC光纤准直器,532 nm,f=10.90 mm,NA=0.25
¥2,139.00
Today
Back to Top

FC/APC光纤准直器,543 nm

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergencedTheoretical
Divergence
NAFocal LengtheHousing Outer
Diameter
External
Threading
F230APC-A543 nm350 - 700 nm
Ravg < 0.5%
0.83 mm4.02 mm0.05 +0.01 / -0.00°Divergence
Raw Data
0.574.34 mm11 mmgM11 x 0.5
F240APC-A543 nm350 - 700 nm
Ravg < 0.5%
1.5 mm6.97 mm0.027°Divergence
Raw Data
0.517.86 mm12 mmfM12 x 0.5
F220APC-A543 nm350 - 700 nm
Ravg < 0.5%
2.06 mm10.74 mm0.019 +0.010 / -0.000°Divergence
Raw Data
0.2510.92 mm11 mmgM11 x 0.5
F260APC-A543 nm400 - 600 nm
Ravg < 0.5%
2.8 mm14.85 mm0.014°Divergence
Raw Data
0.1715.01 mm11 mmgM11 x 0.5
F280APC-A543 nm400 - 600 nm
Ravg < 0.5%
3.3 mm17.40 mm0.012°Divergence
Raw Data
0.1518.07 mm11 mmgM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用460HP光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 1/e2发散全角理论值;使用460HP光纤在对准波长处计算
  • 在对准波长处计算
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F230APC-A Support Documentation
F230APC-ACustomer Inspired! FC/APC光纤准直器,543 nm,f=4.34 mm,NA=0.57
¥2,139.00
2 Weeks
F240APC-A Support Documentation
F240APC-AFC/APC光纤准直器,543 nm,f=7.86 mm,NA=0.51
¥2,139.00
Today
F220APC-A Support Documentation
F220APC-ACustomer Inspired! FC/APC光纤准直器,543 nm,f=10.92 mm,NA=0.25
¥2,139.00
2 Weeks
F260APC-A Support Documentation
F260APC-AFC/APC光纤准直器,543 nm,f=15.01 mm,NA=0.17
¥2,139.00
2 Weeks
F280APC-A Support Documentation
F280APC-AFC/APC光纤准直器,543 nm,f=18.07 mm,NA=0.15
¥2,139.00
2 Weeks
Back to Top

FC/APC光纤准直器,633 nm

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergenceTheoretical
Divergence
NAFocal LengthdHousing Outer
Diameter
External
Threading
F230APC-633633 nm350 - 700 nm
Ravg < 0.5%
0.84 mm4.07 mm0.055 +0.01 / -0.00°eDivergence
Raw Data
0.564.46 mm11 mmgM11 x 0.5
F110APC-633633 nm350 - 700 nm
Ravg < 0.5%
1.16 mm5.93 mm0.04 +0.01 / -0.00°fDivergence
Raw Data
0.386.17 mm11 mmgM11 x 0.5
F240APC-B633 nm650 - 1050 nm
Ravg < 0.5%
1.5 mm6.96 mm0.031°fDivergence
Raw Data
0.507.93 mm12 mmhM12 x 0.5
F220APC-633633 nm350 - 700 nm
Ravg < 0.5%
2.06 mm10.83 mm0.022 +0.01 / -0.00°eDivergence
Raw Data
0.2511.00 mm11 mmgM11 x 0.5
F260APC-B633 nm600 - 1050 nm
Ravg < 0.5%
2.8 mm14.87 mm0.016°fDivergence
Raw Data
0.1615.15 mm11 mmgM11 x 0.5
F280APC-B633 nm600 - 1050 nm
Ravg < 0.5%
3.4 mm17.52 mm0.015°fDivergence
Raw Data
0.1518.24 mm11 mmgM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用SM600光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 在对准波长处计算
  • 1/e2发散全角理论值;使用SM600光纤在对准波长处计算
  • 1/e2发散全角测量值;使用SM600光纤在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F230APC-633 Support Documentation
F230APC-633Customer Inspired! FC/APC光纤准直器,633 nm,f=4.46 mm,NA=0.56
¥2,139.00
2 Weeks
F110APC-633 Support Documentation
F110APC-633FC/APC光纤准直器,633 nm,f=6.17 mm,NA=0.38
¥2,139.00
2 Weeks
F240APC-B Support Documentation
F240APC-BFC/APC光纤准直器,633 nm,f=7.93 mm,NA=0.50
¥2,139.00
Today
F220APC-633 Support Documentation
F220APC-633Customer Inspired! FC/APC光纤准直器,633 nm,f=11.00 mm,NA=0.25
¥2,139.00
Today
F260APC-B Support Documentation
F260APC-BFC/APC光纤准直器,633 nm,f=15.15 mm,NA=0.16
¥2,139.00
2 Weeks
F280APC-B Support Documentation
F280APC-BFC/APC光纤准直器,633 nm,f=18.24 mm,NA=0.15
¥2,139.00
Today
Back to Top

FC/APC光纤准直器,780 nm

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergenceTheoretical DivergenceNAFocal LengthdHousing Outer
Diameter
External
Threading
F230APC-780780 nm650 - 1050 nm
Ravg < 0.5%
0.98 mm4.12 mm0.06 +0.01 / -0.00°eDivergence
Raw Data
0.554.51 mm11 mmgM11 x 0.5
F110APC-780780 nm650 - 1050 nm
Ravg < 0.5%
1.36 mm6.00 mm0.04 +0.01 / -0.00°fDivergence
Raw Data
0.376.24 mm11 mmgM11 x 0.5
F240APC-780780 nm650 - 1050 nm
Ravg < 0.5%
1.5 mm7.09 mm0.036°fDivergence
Raw Data
0.508.00 mm12 mmhM12 x 0.5
F220APC-780780 nm650 - 1050 nm
Ravg < 0.5%
2.1 mm10.91 mm0.026°fDivergence
Raw Data
0.2611.07 mm11 mmgM11 x 0.5
F260APC-780780 nm650 - 1050 nm
Ravg < 0.5%
3.33 mm15.11 mm0.02 +0.01 / -0.00°eDivergence
Raw Data
0.1615.29 mm11 mmgM11 x 0.5
F280APC-780780 nm650 - 1050 nm
Ravg < 0.5%
4.00 mm17.68 mm0.01 +0.01 / -0.00°eDivergence
Raw Data
0.1518.40 mm11 mmgM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用780HP光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 在对准波长处计算
  • 1/e2发散全角测量值;使用780HP光纤在对准波长处计算
  • 1/e2发散全角理论值;使用780HP光纤在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F230APC-780 Support Documentation
F230APC-780Customer Inspired! FC/APC光纤准直器,780 nm,f=4.51 mm,NA=0.55
¥2,139.00
Today
F110APC-780 Support Documentation
F110APC-780FC/APC光纤准直器,780 nm,f=6.24 mm,NA=0.37
¥2,139.00
2 Weeks
F240APC-780 Support Documentation
F240APC-780FC/APC光纤准直器,780 nm,f=8.0 mm,NA=0.50
¥2,139.00
Today
F220APC-780 Support Documentation
F220APC-780FC/APC光纤准直器,780 nm,f=11.07 mm,NA=0.26
¥2,139.00
Today
F260APC-780 Support Documentation
F260APC-780Customer Inspired! FC/APC光纤准直器,780 nm,f=15.29 mm,NA=0.16
¥2,139.00
Today
F280APC-780 Support Documentation
F280APC-780Customer Inspired! FC/APC光纤准直器,780 nm,f=18.40 mm,NA=0.15
¥2,139.00
Today
Back to Top

光纤准直器,850 nm,FC/APC接头

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergenceTheoretical
Divergence
NAFocal LengthedHousing Outer
Diameter
External
Threading
F230APC-850850 nm650 - 1050 nm
Ravg < 0.5%
0.98 mm4.13 mm0.06 +0.01 / -0.00°eDivergence
Raw Data
0.494.53 mm11 mmgM11 x 0.5
F110APC-850850 nm650 - 1050 nm
Ravg < 0.5%
1.36 mm6.02 mm0.05 +0.01 / -0.00°fDivergence
Raw Data
0.376.26 mm11 mmgM11 x 0.5
F240FAPC-850850 nm650 - 1050 nm
Ravg < 0.5%
1.74 mm7.11 mm0.04 +0.01 / -0.00°eDivergence
Raw Data
0.508.02 mm12 mmhM12 x 0.5
F220APC-850850 nm650 - 1050 nm
Ravg < 0.5%
2.41 mm10.94 mm0.03 +0.01 / -0.00°eDivergence
Raw Data
0.2511.12 mm11 mmgM11 x 0.5
F260APC-850850 nm650 - 1050 nm
Ravg < 0.5%
3.32 mm15.15 mm0.02 +0.01 / -0.00°eDivergence
Raw Data
0.1615.33 mm11 mmgM11 x 0.5
F280APC-850850 nm650 - 1050 nm
Ravg < 0.5%
3.99 mm17.73 mm0.02 +0.01 / -0.00°eDivergence
Raw Data
0.1518.45 mm11 mmgM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用780HP光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 在对准波长处计算
  • 1/e2发散全角测量值;使用780HP光纤在对准波长处计算
  • 1/e2发散全角理论值;使用780HP光纤在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F230APC-850 Support Documentation
F230APC-850光纤准直器,850 nm,f = 4.53 mm,NA = 0.49,FC/APC接头
¥2,139.00
Today
F110APC-850 Support Documentation
F110APC-850光纤准直器,850 nm,f = 6.26 mm,NA = 0.37,FC/APC接头
¥2,139.00
2 Weeks
F240APC-850 Support Documentation
F240APC-850Customer Inspired! 光纤准直器,850 nm,f = 8.02 mm,NA = 0.50,FC/APC接头
¥2,139.00
2 Weeks
F220APC-850 Support Documentation
F220APC-850Customer Inspired! 光纤准直器,850 nm,f = 11.12 mm,NA = 0.25,FC/APC接头
¥2,139.00
Today
F260APC-850 Support Documentation
F260APC-850光纤准直器,850 nm,f = 15.33 mm,NA = 0.16,FC/APC接头
¥2,139.00
2 Weeks
F280APC-850 Support Documentation
F280APC-850Customer Inspired! 光纤准直器,850 nm,f = 18.45 mm,NA = 0.15,FC/APC接头
¥2,139.00
Today
Back to Top

FC/APC光纤准直器,980 nm

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergenceTheoretical
Divergence
NAFocal LengthdHousing Outer
Diameter
External
Threading
F230APC-980980 nm650 - 1050 nm
Ravg < 0.5%
0.98 mm4.16 mm0.073 +0.01 / -0.00°eDivergence
Raw Data
0.494.55 mm11 mmgM11 x 0.5
F110APC-980980 nm650 - 1050 nm
Ravg < 0.5%
1.35 mm6.05 mm0.05 +0.01 / -0.00°fDivergence
Raw Data
0.376.29 mm11 mmgM11 x 0.5
F240APC-980980 nm600 - 1050 nm
Ravg < 0.5%
1.7 mm7.15 mm0.04 +0.01 / -0.00°eDivergence
Raw Data
0.508.06 mm12 mmhM12 x 0.5
F220APC-980980 nm600 - 1050 nm
Ravg < 0.5%
2.4 mm10.99 mm0.03 +0.01 / -0.00°eDivergence
Raw Data
0.2511.16 mm11 mmgM11 x 0.5
F260APC-980980 nm650 - 1050 nm
Ravg < 0.5%
3.31 mm15.22 mm0.022 +0.01 / -0.00°eDivergence
Raw Data
0.1615.39 mm11 mmgM11 x 0.5
F280APC-980980 nm600 - 1050 nm
Ravg < 0.5%
4.0 mm17.81 mm0.02 +0.01 / -0.00°eDivergence
Raw Data
0.1518.53 mm11 mmgM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用SM980-5.8-125光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 在对准波长处计算
  • 1/e2发散全角测量值;使用SM980-5.8-125光纤在对准波长处计算
  • 1/e2发散全角理论值;使用SM980-5.8-125光纤在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F230APC-980 Support Documentation
F230APC-980Customer Inspired! FC/APC光纤准直器,980 nm,f=4.55 mm,NA=0.49
¥2,139.00
2 Weeks
F110APC-980 Support Documentation
F110APC-980FC/APC光纤准直器,980 nm,f=6.29 mm,NA=0.37
¥2,139.00
2 Weeks
F240APC-980 Support Documentation
F240APC-980FC/APC光纤准直器,980 nm,f=8.06 mm,NA=0.50
¥2,139.00
2 Weeks
F220APC-980 Support Documentation
F220APC-980FC/APC光纤准直器,980 nm,f=11.16 mm,NA=0.25
¥2,139.00
Today
F260APC-980 Support Documentation
F260APC-980Customer Inspired! FC/APC光纤准直器,980 nm,f=15.39 mm,NA=0.16
¥2,139.00
2 Weeks
F280APC-980 Support Documentation
F280APC-980FC/APC光纤准直器,980 nm,f=18.53 mm,NA=0.15
¥2,139.00
2 Weeks
Back to Top

FC/APC光纤准直器,1064 nm

Item #Alignment
Wavelength
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergenceTheoretical
Divergence
NAFocal LengthdExternal
Threading
Housing
Outer Diameter
F230APC-10641064 nm650 - 1050 nm
Ravg < 0.5%
1.00 mm4.17 mm0.08 +0.01 / -0.00°eDivergence
Raw Data
0.554.56 mmM11 x 0.5g11 mm
F110APC-10641064 nm1050 - 1700 nm
Ravg < 0.5%
1.38 mm6.07 mm0.06 +0.01 / -0.00°fDivergence
Raw Data
0.376.31 mmM11 x 0.5g11 mm
F240APC-10641064 nm650 - 1050 nm
Ravg < 0.5%
1.76 mm7.16 mm0.04 +0.01 / -0.00°eDivergence
Raw Data
0.508.07 mmM12 x 0.5h12 mm
F220APC-10641064 nm1050 - 1075 nm
Ravg < 0.25%
2.4 mm11.02 mm0.032°eDivergence
Raw Data
0.2511.17 mmM11 x 0.5g11 mm
F260APC-10641064 nm650 - 1050 nm
Ravg < 0.5%
3.37 mm15.25 mm0.02 +0.01 / -0.00°eDivergence
Raw Data
0.1615.43 mmM11 x 0.5g11 mm
F280APC-10641064 nm650 - 1050 nm
Ravg < 0.5%
4.05 mm17.86 mm0.02 +0.01 / -0.00°eDivergence
Raw Data
0.1518.60 mmM11 x 0.5g11 mm
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用SM980-5.8-125光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 在对准波长处计算
  • 1/e2发散全角测量值;使用SM980-5.8-125光纤在对准波长处计算
  • 1/e2发散全角理论值;使用SM980-5.8-125光纤在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F230APC-1064 Support Documentation
F230APC-1064Customer Inspired! FC/APC光纤准直器,1064 nm,f=4.56 mm,NA=0.55
¥2,139.00
Today
F110APC-1064 Support Documentation
F110APC-1064FC/APC光纤准直器,1064 nm,f=6.31 mm,NA=0.37
¥2,139.00
2 Weeks
F240APC-1064 Support Documentation
F240APC-1064Customer Inspired! FC/APC光纤准直器,1064 nm,f=8.07 mm,NA=0.50
¥2,139.00
Today
F220APC-1064 Support Documentation
F220APC-1064FC/APC光纤准直器,1064 nm,f=11.17 mm,NA=0.25
¥2,139.00
Today
F260APC-1064 Support Documentation
F260APC-1064Customer Inspired! FC/APC光纤准直器,1064 nm,f=15.43 mm,NA=0.16
¥2,139.00
Today
F280APC-1064 Support Documentation
F280APC-1064Customer Inspired! FC/APC光纤准直器,1064 nm,f=18.60 mm,NA=0.15
¥2,139.00
Today
Back to Top

FC/APC光纤准直器,1310 nm

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergenceTheoretical
Divergence
NAFocal LengthdHousing Outer
Diameter
External
Threading
F230APC-13101310 nm1050 - 1620 nm
Ravg < 0.5%
0.83 mm4.20 mm0.115 +0.01 / -0.00°eDivergence
Raw Data
0.544.59 mm11 mmgM11 x 0.5
F110APC-13101310 nm1050 - 1700 nm
Ravg < 0.5%
1.15 mm6.10 mm0.08 +0.01 / -0.00°fDivergence
Raw Data
0.376.35 mm11 mmgM11 x 0.5
F240APC-C1310 nm1050 - 1620 nm
Ravg < 0.5%
1.5 mm7.21 mm0.065°eDivergence
Raw Data
0.498.13 mm12 mmhM12 x 0.5
F220APC-13101310 nm1050 - 1620 nm
Ravg < 0.5%
2.04 mm11.08 mm0.047 +0.01 / -0.00°fDivergence
Raw Data
0.2511.26 mm11 mmgM11 x 0.5
F260APC-C1310 nm1050 - 1620 nm
Ravg < 0.5%
2.8 mm15.35 mm0.034°eDivergence
Raw Data
0.1615.52 mm11 mmgM11 x 0.5
F280APC-C 1310 nm1050 - 1620 nm
Ravg < 0.5%
3.4 mm17.96 mm0.028°eDivergence
Raw Data
0.1518.67 mm11 mmgM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用SMF-28-J9光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 在对准波长处计算
  • 1/e2发散全角测量值;使用SMF-28-J9光纤在对准波长处计算
  • 1/e2发散全角理论值;使用SMF-28-J9光纤在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F230APC-1310 Support Documentation
F230APC-1310Customer Inspired! FC/APC光纤准直器,1310 nm,f=4.59 mm,NA=0.54
¥2,139.00
Today
F110APC-1310 Support Documentation
F110APC-1310FC/APC光纤准直器,1310 nm,f=6.35 mm,NA=0.37
¥2,139.00
2 Weeks
F240APC-C Support Documentation
F240APC-CFC/APC光纤准直器,1310 nm,f=8.13 mm,NA=0.49
¥2,139.00
Today
F220APC-1310 Support Documentation
F220APC-1310Customer Inspired! FC/APC光纤准直器,1310 nm,f=11.26 mm,NA=0.25
¥2,139.00
Today
F260APC-C Support Documentation
F260APC-CFC/APC光纤准直器,1310 nm,f=15.36 mm,NA=0.16
¥2,139.00
Today
F280APC-C Support Documentation
F280APC-CFC/APC光纤准直器,1310 nm,f=18.67 mm,NA=0.15
¥2,139.00
Today
Back to Top

1550 nm,FC/APC光纤准直器

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergenceTheoretical
Divergence
NAFocal LengthdHousing Outer
Diameter
External
Threading
F230APC-15501550 nm1050 - 1620 nm
Ravg < 0.5%
0.87 mm4.21 mm0.129 +0.01 / -0.00°eDivergence
Raw Data
0.544.61 mm11 mmgM11 x 0.5
F110APC-15501550 nm1050 - 1700 nm
Ravg < 0.5%
1.21 mm6.13 mm0.09 +0.01 / -0.00°fDivergence
Raw Data
0.376.37 mm11 mmgM11 x 0.5
F240APC-15501550 nm1050 - 1620 nm
Ravg < 0.5%
1.6 mm7.26 mm0.073°fDivergence
Raw Data
0.498.18 mm12 mmhM12 x 0.5
F220APC-15501550 nm1050 - 1620 nm
Ravg < 0.5%
2.15 mm11.15 mm0.053 +0.01 / -0.00°eDivergence
Raw Data
0.2411.32 mm11 mmgM11 x 0.5
F260APC-15501550 nm1050 - 1620 nmRavg < 0.5%3.0 mm15.44 mm0.038°fDivergence
Raw Data
0.1615.58 mm11 mmgM11 x 0.5
F280APC-15501550 nm1050 - 1620 nm
Ravg < 0.5%
3.6 mm18.07 mm0.032°fDivergence
Raw Data
0.1518.75 mm11 mmgM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用SMF-28-J9光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 在对准波长处计算
  • 1/e2发散全角测量值;使用SMF-28-J9光纤在对准波长处计算
  • 1/e2发散全角理论值;使用SMF-28-J9光纤在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
  • 这些准直器兼容AD12BAAD12FAD12NTKAD12FKAD12NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F230APC-1550 Support Documentation
F230APC-1550Customer Inspired! FC/APC光纤准直器,1550 nm,f=4.61 mm,NA=0.54
¥2,139.00
Today
F110APC-1550 Support Documentation
F110APC-1550FC/APC光纤准直器,1550 nm,f=6.37 mm,NA=0.37
¥2,139.00
Today
F240APC-1550 Support Documentation
F240APC-1550FC/APC光纤准直器,1550 nm,f=8.18 mm,NA=0.49
¥2,139.00
Today
F220APC-1550 Support Documentation
F220APC-1550Customer Inspired! FC/APC光纤准直器,1550 nm,f=11.32 mm,NA=0.24
¥2,139.00
Today
F260APC-1550 Support Documentation
F260APC-1550FC/APC光纤准直器,1550 nm,f=15.58 mm,NA=0.16
¥2,139.00
Today
F280APC-1550 Support Documentation
F280APC-1550FC/APC光纤准直器,1550 nm,f=18.75 mm,NA=0.15
¥2,139.00
Today
Back to Top

FC/APC光纤准直器,2 µm

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergencedTheoretical
Divergence
NAFocal LengtheHousing Outer
Diameterf
External
Threading
F028APC-20002 µm1.8 - 3.0 µm
Ravg < 1.0%
1.2 mm5.73 mm0.13° +0.01 / -0.00°Divergence
Raw Data
0.565.91 mm11 mmM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用SM2000光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 1/e2发散全角理论值;使用SM2000光纤在对准波长处计算
  • 在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F028APC-2000 Support Documentation
F028APC-2000FC/APC光纤准直器,2 µm,f=5.91 mm,NA=0.56
¥5,931.29
Today
Back to Top

FC/APC光纤准直器,3.45 µm

虽然这些准直器出厂时在特定波长对准,但是它在宽波长范围内发散角较小,因此也可用于准直增透膜范围内的其它波长。请参考准直器的理论发散角曲线确定是否适合您的应用。

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergencedTheoretical
Divergence
NAFocal LengtheHousing
Outer Diameterf
External
Threading
F028APC-34503.45 µm3 - 5 µm
Ravg < 1.0%
2.01 mm5.77 mm0.125 +0.01 / -0.00°Divergence
Raw Data
0.565.94 mm11 mmM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用ZrF4光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 1/e2发散全角理论值;使用ZrF4光纤在对准波长处计算
  • 在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F028APC-3450 Support Documentation
F028APC-3450FC/APC光纤准直器,3.45 µm,f=5.94 mm,NA=0.56
¥5,931.29
2 Weeks
Back to Top

FC/APC光纤准直器,4.55 µm

虽然这些准直器出厂时在特定波长对准,但是它在宽波长范围内发散角较小,因此也可用于准直增透膜范围内的其它波长。请参考准直器的理论发散角曲线确定是否适合您的应用。

Item #Alignment
Wavelengtha
Lens AR CoatingWaist DiameterbWaist DistancecFull-Angle DivergencedTheoretical
Divergence
NAFocal LengtheHousing Outer
Diameterf
External
Threading
F028APC-49504.55 µm3 - 5 µm
Ravg < 1.0%
2.16 mm5.79 mm0.15 +0.05 / -0°Divergence
Raw Data
0.565.97 mm11 mmM11 x 0.5
  • 为了获得最佳准直效果,应在对准波长下使用这些封装组件。对于某些应用,它们也可用于增透膜范围内的其他波长。联系技术支持techsupport-cn@thorlabs.com可获取其他波长下对准的封装。
  • 距离透镜一倍焦距处的1/e2直径理论值;使用InF3光纤在对准波长处计算
  • 从准直器外壳的正面起测量
  • 1/e2发散全角理论值;使用InF3光纤在对准波长处计算
  • 在对准波长处计算
  • 这些准直器兼容AD11BAAD1109FRMS11PAD11FAD11NTKAD11FKAD11NT安装转接件。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
F028APC-4950 Support Documentation
F028APC-4950FC/APC光纤准直器,4.55 µm,f=5.97 mm,NA=0.56
¥5,931.29
2 Weeks