Quantum and Interband Cascade Lasers (QCLs and ICLs), 3 - 11 µm


  • Center Wavelengths: 3.00 - 11.00 µm (3333 - 909 cm-1)
  • Optical Output Powers up to 3000 mW
  • Broadband Fabry-Perot Lasers and Single-Wavelength Distributed Feedback Lasers

QF4600T1

Fabry-Perot Laser, Ø9 mm TO Can

QD5250C2

Distributed Feedback Laser, Two-Tab C-Mount

QD7500DM1

Distributed Feedback Laser, D-Mount

QD8500HHLH

Distributed Feedback Laser, Horizontal HHL Package

QF4050D3

Fabry-Perot Laser, D-Mount

Related Items


Please Wait
Laser Diode Selection Guidea
Shop by Wavelength
UV (375 nm)
Visible (404 nm - 690 nm)
NIR (705 nm - 2000 nm)
MIR (3.00 µm - 11.00 µm)
Shop by Package / Type
  • Our complete selection of laser diodes is available on the LD Selection Guide tab above.

Webpage Features
info icon Clicking this icon opens a window that contains specifications and mechanical drawings.
info icon Clicking this icon allows you to download our standard support documentation.

Choose Item

Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.
Contact ThorlabsLaser Diode Tutorial

Features

  • Quantum and Interband Cascade Lasers (QCLs and ICLs)
  • CW Output Up to 3000 mW
  • Center Wavelengths Between 3.00 µm and 11.00 μm (Wavenumbers Between
    3333 cm-1 and 909 cm-1)
  • Broadband Fabry-Perot (FP) and Single-Frequency Distributed Feedback (DFB) Options
  • C-Mount, D-Mount, and HHL Lasers are Electrically Isolated from Their Mounts
  • Custom Wavelengths, Custom Packages, and OEM Quantities Also Available (Contact Tech Support for Details)
  • Gain Chips with AR-Coated Front Facets Also Available as a Custom Order

Thorlabs' Quantum and Interband Cascade Lasers (QCLs and ICLs) are composed of multiple quantum well heterostructures and utilize intersubband and interband transitions, respectively, to access the mid-infrared spectral region. They are offered in four packages: a two-tab C-mount, a Ø9 mm TO can, a D-mount, and a high heat load (HHL) package with horizontal emission. The two-tab C-mount and Ø9 mm TO can packages can be easily interfaced to our SM1 lens tubes, 30 mm cage systems, and 60 mm cage systems using the LDMC20 C-Mount Laser Mount or the LDM90 Laser Mount, respectively. The D-mount and HHL packages are intended for OEM applications and systems integration. The HHL package can be mounted Thorlabs' LCM100(/M) Liquid-Cooled Mount for added thermal regulation and protection of the laser diode. Additional information is available in the Packages tab. 

Fabry-Perot Lasers
Fabry-Perot quantum and interband cascade lasers exhibit broadband emission in a range spanning roughly 50 cm-1 to 120 cm-1. The laser's specified output power is the sum over the full spectral bandwidth. Since these lasers have broadband emission, they are well suited for medical imaging, illumination, and microscopy applications. The output spectrum and L-I-V curve of each serial-numbered device, measured by an automated test station, are available below and are also included on a data sheet that ships with the device.

Each Fabry-Perot quantum and interband cascade laser has an HR-coated back facet. As a custom option, these lasers can be ordered with an AR coating on the front facet; however, the custom item will operate as a gain chip and not as a CW laser. Although these lasers are specified for CW output, they are compatible with pulsed applications provided that the CW max operating current is not exceeded. For more information or to order a Fabry-Perot QCL or ICL with a tested and specified pulsed optical power or other custom features, please contact Tech Support.

Distributed Feedback Lasers
Distributed feedback (DFB) quantum and interband cascade lasers emit at a well-defined center wavelength and provide single transverse mode operation. By tuning the input current and operating temperature, the output frequency can be tuned over a narrow range between 1 cm-1 and 5 cm-1. They are ideal for chemical sensing (see the Spectroscopy tab), optical communications, and other applications. The output spectrum, power, and L-I-V curve of each serial-numbered device, as measured by an automated test station, are available below and are also included on a data sheet with the laser. These quantum and interband cascade lasers are specified for CW output. While pulsed output is possible, this application prohibits current tuning, and performance is not guaranteed. For two-tab C-Mount and D-Mount lasers, some optical power is emitted through the rear facet; this output is not usable in applications.

Some of Thorlabs' DFB quantum and interband cascade lasers are uniquely suited for gas sensing and analysis. Select high heat load QCLs are designed to emit at wavelengths ideal for many gases commonly studied in spectroscopy (see the Spectroscopy tab for more information). These DFB quantum cascade lasers are guaranteed to reach their specified wavelengths within their tuning range and are single wavelength, allowing them to be tuned to specific gas spectra. Thorlabs also sells the ID3250HHLH interband cascade laser and the QD8050CM1 quantum cascade laser, which can be used for methane sensing. A list of these QCLs can be found in the Spectroscopy tab above, and more information is available by clicking on the blue info icons () next to the relevant Item #s below.

Mounts, Drivers, and Temperature Control
For two-tab C-mount quantum cascade lasers, we generally recommend the LDMC20 C-Mount Laser Mount and ITC4002QCL or ITC4005QCL Dual Current / Temperature Controller. This device combination includes all the necessary components to mount, drive, and thermally regulate a two-tab C-mount laser. Other compatible current and temperature controllers are listed in the Drivers tab. The LDM90(/M) Laser Mount along with the ITC4002QCL or ITC4005QCL can be used with the TO can lasers, but the 8 W cooling capacity of the LDM90 may limit the driving current of the lasers.

Distributed feedback and Fabry-Perot HHL lasers are compatible with any HHL mount, although cables for HHL packages are typically not rated for the 4.5 A maximum current of the distributed feedback lasers' or the up to 8 A maximum current of the Fabry-Perot lasers' internal thermoelectric coolers. For stable mounting and temperature control of HHL lasers, we recommend using the LCM100(/M) liquid-cooled mount and the CAB4007A or CAB4007B dual LD / TEC connector cables. D-mount lasers require custom mounts. Our ICLs emit a horizontally polarized beam at wavelengths as long as 3.5 µm, while our QCLs emit a vertically polarized beam at wavelengths as long as 11 µm. 

FP and DFB Comparison
Click to Enlarge

Fabry-Perot and Distributed Feedback Laser Comparison
Fabry-Perot (FP) Lasers have broadband emission, while Distributed Feedback (DFB) Lasers emit at a well defined wavelength.

If designing your own mounting solution, note that due to these lasers' heat loads, the laser must be mounted in a thermally conductive housing to prevent heat buildup. Heat loads for QCLs and ICLs can be up to 70 W, depending upon the wavelength and package. See the Handling tab for additional information.

The typical operating voltages of our QCLs and ICLs can be as high as 16 V and 8 V, respectively. These lasers do not have built-in monitor photodiodes and must be operated in constant current mode.

High-Power QCLs
Click to Enlarge

Maximum Output Power of Custom Fabry-Perot QCLs
Contact Thorlabs

OEM & Custom QCLs

Thorlabs manufactures custom and OEM quantum cascade lasers in high volumes. We maintain a broad chip inventory at our Jessup, Maryland laser manufacturing facility and we are accustomed to fulfilling specialized requests.

More details are available on the Custom & OEM Lasers tab. To inquire about pricing and availability, please contact us. A semiconductor specialist will contact you within 24 hours or the next business day.

Current and Temperature Controllers

Use the tables below to select a compatible controller for our MIR lasers. The first table lists the controllers with which a particular MIR laser is compatible, and the second table contains selected information on each controller. Complete information on each controller is available in its full web presentation. We particularly recommend our ITC4002QCL and ITC4005QCL controllers, which have high compliance voltages of 17 V and 20 V, respectively. Together, these drivers support the current and voltage requirements of our entire line of Mid-IR Lasers.

The typical operating voltages of our QCLs are 7 - 16 V, while the typical operating voltages of our ICL is 5 V to 8 V. To get L-I-V and spectral measurements of a specific, serial-numbered device, click "Choose Item" next to the part number below, then click on the Docs Icon next to the serial number of the device.

Laser Mount Compatibility
Thorlabs' LDMC20(/M) C-Mount Laser Mount ships with current and TEC cables for the LDC4005, ITC4001, ITC4002QCL, ITC4005, and ITC4005QCL controllers. To use the LDMC20 with our other controllers, custom cables will be required. For our Ø9 mm TO can QCL we have the LDM90(/M) Laser Mount which is fully compatible with all of the controllers listed in the tables below; however, the mount itself has a limited heat load of 8 W, meaning some QCLs cannot be driven at full power in this mount. If designing your own mounting solution, note that due to these lasers' heat loads, we recommend that they be secured in a thermally conductive housing to prevent heat buildup.

Thorlabs' LCM100(/M) Liquid Cooled Mount is specifically designed to be used with Thorlabs' HHL laser packages. The LCM100(/M) Mount is capable of dissipating heat loads of >140 W at 25 °C, making it an ideal solution for temperature-controlled operation for all of Thorlabs' HHL lasers. For more details on the LCM100(/M) Liquid-Cooled Mount, please see its web presentation here.

The CAB4007B Dual Laser / TEC Connector Cable is designed to be used with any of Thorlabs' HHL laser packages or other HHL lasers with compatible pin settings. The CAB4007B connector cable is rated for up to 10 A of laser and TEC current. The CAB4007A Dual Laser / TEC Connector Cable is designed for use with the LCM100(/M) Mount and is rated for up to 11 A of laser and TEC current. For more details on the CAB4007x cables please see the full web presentation here. Please note that third party cables for these packages are typically not rated for the maximum current of the internal thermoelectric cooler.

If designing your own mounting solution, note that due to these lasers' heat loads, we recommend that they be secured in a thermally conductive housing with sufficient cooling capacity, either active or passive, to prevent heat buildup. Heat loads for DFB QCLs and ICLs can be up to 38 W. The total heat loads for the Fabry-Perot QCL HHL package can be up to 70 W, although a typical heat load from a Fabry-Perot QCL itself is around 20 W.

Laser and Controller Compatibility

Laser Item # Wavelength Current Controllers Dual Current / Temperature Controllers
Small Benchtop Large Benchtop Large Benchtop
ID3250HHLHa 3.00 to 3.50 µm
(3333 to 2857 cm-1)
LDC205C, LDC210C - ITC4002QCL
ID3750HHLHa 3.50 to 4.00 µm
(2857 to 2500 cm-1)
LDC205C, LDC210C - ITC4002QCL
QF3850T1 3.85 µm
(2597 cm-1)
- - ITC4002QCL, ITC4005QCL
QF3850HHLHb 3.85 µm
(2597 cm-1)
- - ITC4002QCL, ITC4005QCL
QD4500CM1 4.00 to 5.00 µm
(2500 to 2000 cm-1)
- - ITC4002QCL, ITC4005QCL
QD4500HHLHa 4.00 to 5.00 µm
(2500 to 2000 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4040HHLHb 4.04 µm
(2475 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4050C2 4.05 µm
(2469 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4050D2 - - ITC4002QCL, ITC4005QCL
QF4050D3 - -
QF4050T2 - -
QF4050T1 - -
QD4472HHa 4.472 µm
(2236 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4600T2 4.60 µm
(2174 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4600T1 4.60 µm
(2174 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4600C2 4.6 µm
(2174 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4600T3 4.60 µm
(2174 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4600D4 4.60 µm
(2174 cm-1)
- - ITC4005QCL
QF4600D3
QD4602HHa 4.602 µm
(2173 cm-1)
- - ITC4002QCL, ITC4005QCL
QF4650HHLHb 4.65 µm
(2151 cm-1)
- - ITC4002QCL, ITC4005QCL
QD5500CM1 5.00 to 6.00 µm
(2000 to 1667 cm-1)
- - ITC4002QCL, ITC4005QCL
QD5500HHLHa 5.00 to 6.00 µm
(2000 to 1667 cm-1)
- - ITC4002QCL, ITC4005QCL
QD5250C2 5.20 to 5.30 µm
(1923 to 1887 cm-1)
- - ITC4002QCL, ITC4005QCL
QD5263HHa 5.263 µm
(1900 cm-1)
- - ITC4002QCL, ITC4005QCL
QD6500CM1 6.00 to 7.00 µm
(1667 - 1429 cm-1)
- - ITC4002QCL, ITC4005QCL
QD6500HHLHa 6.00 to 7.00 µm
(1667 to 1429 cm-1)
- - ITC4002QCL, ITC4005QCL
QD6134HHa 6.134 µm
(1630 cm-1)
- - ITC4002QCL, ITC4005QCL
QD7500DM1 7.00 to 8.00 µm
(1429 to 1250 cm-1)
- - ITC4002QCL, ITC4005QCL
QD7500HHLHa 7.00 to 8.00 µm
(1429 to 1250 cm-1)
- - ITC4002QCL, ITC4005QCL
QD7416HHa 7.416 µm
(1348 cm-1)
- - ITC4002QCL, ITC4005QCL
QD7716HHa 7.716 µm
(1296 cm-1)
- - ITC4002QCL, ITC4005QCL
QF7900HBc 7.9 µm
(1266 cm-1)
- - ITC4002QCL, ITC4005QCL
QD7901HHa 7.901 µm
(1266 cm-1)
- - ITC4002QCL, ITC4005QCL
QD8050CM1 8.00 to 8.10 µm
(1250 to 1235 cm-1)
- LDC4005 ITC4001, ITC4002QCL, ITC4005, ITC4005QCL
QD8500CM1 8.00 to 9.00 µm
(1250 to 1111 cm-1)
- - ITC4002QCL, ITC4005QCL
QD8500HHLHa 8.00 to 9.00 µm
(1250 to 1111 cm-1)
- - ITC4002QCL, ITC4005QCL
QF8450C2 8.45 µm
(1183 cm-1)
- - ITC4002QCL, ITC4005QCL
QF8500HBc 8.5 µm
(1176 cm-1)
- - ITC4002QCL, ITC4005QCL
QD8912HHa 8.912 µm
(1122.1 cm-1)
- - ITC4002QCL, ITC4005QCL
QF9150C2 9.15 µm
(1093 cm-1)
- - ITC4002QCL, ITC4005QCL
QD9500CM1 9.00 to 10.00 µm
(1111 to 1000 cm-1)
- - ITC4002QCL, ITC4005QCL
QD9500HHLHa 9.00 to 10.00 µm
(1111 to 1000 cm-1)
- - ITC4002QCL, ITC4005QCL
QD9062HHa 9.062 µm
(1103.5 cm-1)
- - ITC4002QCL, ITC4005QCL
QF9200HBc 9.2 µm (Typ.)
(1087 cm-1)
- - ITC4002QCL, ITC4005QCL
QD9550C2 9.50 to 9.60 µm
(1042 to 1053 cm-1)
- - ITC4002QCL, ITC4005QCL
QF9500T1 9.5 µm
(1053 cm-1)
- - ITC4002QCL, ITC4005QCL
QF9550CM1 9.55 µm
(1047 cm-1)
- LDC4005 ITC4002QCL, ITC4005, ITC4005QCL
QD9697HHa 9.697 µm
(1031 cm-1)
- - ITC4002QCL, ITC4005QCL
QD10500CM1 10.00 to 11.00 µm
(1000 to 909 cm-1)
- - ITC4002QCL, ITC4005QCL
QD10500HHLHa 10.00 to 11.00 µm
(1000 to 909 cm-1)
- - ITC4002QCL, ITC4005QCL
QD10530HHa 10.530 µm
(949.7 cm -1 )
- - ITC4002QCL , ITC4005QCL
QD10549HHa 10.549 µm
(948 cm -1 )
- - ITC4002QCL , ITC4005QCL
QD10622HHa 10.622 µm
(941 cm-1)
- - ITC4002QCL, ITC4005QCL
  • Thorlabs offers the CAB4007A and CAB4007B connector cables for connecting high heat load lasers to the ITC4002QCL or ITC4005QCL controllers. Please note that third-party cables for these packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • Thorlabs offers the CAB4007A and CAB4007B connector cables for connecting high heat load lasers to the ITC4002QCL or ITC4005QCL controllers. Please note that third-party cables for these packages are typically not rated for the 6 A maximum current of the internal thermoelectric cooler.
  • Thorlabs offers the CAB4007A and CAB4007B connector cables for connecting high heat load lasers to the ITC4002QCL or ITC4005QCL controllers. Please note that third-party cables for these packages are typically not rated for the 8 A maximum current of the internal thermoelectric cooler.

 

Controller Selection Guide

Controller Item # Controller Type Controller Package Current Range Current Resolution Voltage Cables for
LDMC20 Laser Mount
LDC205C Current Small Benchtop
(146 x 66 x 290 mm)
0 to ±0.5 A 10 µA >10 V Not Included with LDMC20a
LDC210C 0 to ±1 A 100 µA >10 V Not Included with LDMC20a
LDC240C 0 to ±4 A 100 µA >5 V Not Included with LDMC20a
LDC4005 Large Benchtop
(263 x 122 x 307 mm)
0 to 5 A 1 mA (Front Panel)
80 µA (Remote Control)
12 V Included with LDMC20
LDC8010 Rack Mounted 0 to ±1 A 15 µA >5 V Not Included with LDMC20a
LDC8020 0 to ±2 A 30 µA >5 V Not Included with LDMC20a
LDC8040 0 to ±4 A 70 µA >5 V Not Included with LDMC20a
ITC4001 Current / Temperature Large Benchtop
(263 x 122 x 307 mm)
0 to 1 A 100 µA (Front Panel)
16 µA (Remote Control)
11 V Included with LDMC20
ITC4002QCL 0 to 2 A 100 µA (Front Panel)
32 µA (Remote Control)
17 V Included with LDMC20
ITC4005 0 to 5 A 1 mA (Front Panel)
80 µA (Remote Control)
12 V Included with LDMC20
ITC4005QCL 20 V Included with LDMC20
  • Thorlabs does not currently offer cables that connect the LDMC20 mount to this controller. Custom cables will be required.

Packages

Thorlabs stocks quantum cascade lasers (QCLs) in four packages: a two-tab C-mount recommended for academic and industrial research, D-mount and high heat load packages with horizontal emission intended for OEM applications and system integration, and a Ø9 mm TO can for easy integration into standard mounts. Please see the Handling tab for more tips and information for handling these laser packages. Other packages may be available as custom orders (see the Custom & OEM Lasers tab).

Two-Tab C-Mount
Click to Enlarge

Two-Tab C-Mount Package

Two-Tab C-Mount
The two-tab C-mount measures 6.4 mm x 4.3 mm x 7.9 mm (not including the tabs), provides high thermal conductivity, and can be secured using a 2-56 or M2 screw with the counterbored Ø2.4 mm (Ø0.09") through hole. The drive voltage and current are supplied through the tabs. As measured from the bottom of the C-mount, the emission height of the QCLs is either 7.15 mm or 7.39 mm depending on the chosen laser; the outer dimensions of the C-mounts are the same. All two-tab C-mount lasers sold on this page are electrically isolated from their C-mounts.

 

D-Mount
Click for Details

Comparison of D-Mount Packages

D-Mount
Designed for OEM customers, our D-mount packages measure 12.0 mm long and have a 2.6 mm emission height. They provide high thermal conductivity and are offered in
4.5 mm, 6.0 mm, or 7.5 mm sizes (measured by cavity length). Note that our DFB D-mount is 2.8 mm thick, whereas our FP D-mounts are 2.1 mm thick. Additionally, our D-mount packages are machined with two counterbored slots for mounting. The drive voltage and current are supplied via two large gold contact pads, which are suitable for wire bonding or probe connections. The lasers are electrically isolated from their D-mounts. A built-in thermistor provides real-time temperature measurements for control electronics.

 

Horizontal HHL
Click to Enlarge

Horizontal HHL Package

High Heat Load Package with Horizontal Emission
This package offers an industry-standard pinout and package dimensions. Each package incorporates a built-in thermistor and thermoelectric cooler (TEC) for active temperature management and prolonged laser lifetime, and also includes an internal aspheric lens that collimates the laser's output. As measured from the bottom of the package, the emission height is 12.7 ± 0.13 mm. The emitted light is coupled out of the package through a wedged zinc sulfide (ZnS) window. The output beam of the Distributed Feedback lasers will deviate downward from the normal by either 2.0° ± 1.5° or 2.0° ± 0.75°, while the output beam of the Fabry-Perot lasers will deviate downward from the normal by 2.0° ± 0.6° or 2.0° ± 0.75°. Each laser is electrically isolated from its mount. More information is available at its Distributed Feedback and Fabry-Perot web presentations.

 

Two-Tab C-Mount
Click to Enlarge

Ø9 mm TO Can Package

Ø9 mm TO Can
The Ø9 mm TO can provides high thermal conductivity, and can be easily integrated into a standard mount for high-power TO can laser diodes. This package incorporates an additional copper disk for added heat dissipation. The additional material makes this TO can thicker than standard; however, the laser is still compatible with all Ø9 mm laser mounts. An AR-coated ZnSe window protects the QCL from dust and debris. The drive voltage and current are supplied through the pins. The emission of the QCL is centered in the TO can.

Do

  • Provide External Temperature Regulation
    (e.g., Heat Sinks, Fans, and/or Water Cooling)
  • Use a Constant Current Source Specifically Designed for Lasers
  • Observe Static Avoidance Practices
  • Be Careful When Making Electrical Connections

Do Not

  • Use Thermal Grease with C-Mount or
    D-Mount Lasers
  • Expose the Laser to Smoke, Dust, Oils, Adhesive Films, or Flux Fumes
  • Blow on the Laser
  • Drop the Laser Package
  • Use Solder with TO Can or D-Mount Lasers

Handling Two-Tab C-Mount, TO Can, D-Mount, and High Heat Load Lasers

Proper precautions must be taken when handling and using two-tab C-mount, TO Can, D-mount, or high heat load (HHL) lasers. Otherwise, permanent damage to the device will occur. Members of our Technical Support staff are available to discuss possible operation issues.

Avoid Static
Since these lasers are sensitive to electrostatic shock, they should always be handled using standard static avoidance practices.

Avoid Dust and Other Particulates
Unlike TO can and butterfly packages, the laser chip of a C-mount or D-mount laser is exposed to air; hence, there is no protection for the delicate laser chip. Contamination of the laser facets must be avoided. Do not blow on the laser or expose it to smoke, dust, oils, or adhesive films. The laser facet is particularly sensitive to dust accumulation. During standard operation, dust can burn onto this facet, which will lead to premature degradation of the laser. If operating a C-mount or D-mount laser for long periods of time outside a cleanroom, it should be sealed in a container to prevent dust accumulation.

HHL lasers and TO cans are sealed (although the seal is not hermetic), so the laser chip will not be exposed to air. However, similar dust avoidance precautions should be followed for the window on these packages, since the windows are exposed to the atmosphere.

Use a Current Source Specifically Designed for Lasers
These lasers should always be used with a high-quality constant current driver specifically designed for use with lasers, such as any current controller listed in the Drivers tab. Lab-grade power supplies will not provide the low current noise required for stable operation, nor will they prevent current spikes that result in immediate and permanent damage.

Thermally Regulate the Laser
Temperature regulation is required to operate the laser for any amount of time. The temperature regulation apparatus should be rated to dissipate the maximum heat load that can be drawn by the laser. For our two-tab C-mount or TO can quantum cascade lasers, this value can be up to 18 W. The LDMC20(/M) C-Mount Laser Mount, which is compatible with our two-tab C-mount package, is rated for >20 W of heat dissipation. The LDM90(/M) Ø9 mm TO Can Laser Mount is only rated for 8 W of heat dissipation, so it cannot operate some quantum cascade lasers at full power. Our DFB D-mount laser's maximum heat load is 7.2 W, our FP D-mount lasers' maximum heat load is 35 W, our HHL FP QCLs have a max heat load of 70 W, and our HHL DFB QCLs and ICL have a maximum heat load of 38 W. The LCM100(/M) Liquid-Cooled Mount is compatible with all standard HHL packages and is capable of dissipating up to 140 W of heat at 25 °C.  

The back face of the C-mount package and the bottom face of the D-mount or high heat load package is machined flat to make proper thermal contact with a heat sink. Ideally, the heat sink will be actively regulated to ensure proper heat conduction. A Thermoelectric Cooler (TEC) is well suited for this task and can easily be incorporated into any standard PID controller. The HHL package incorporates a suitable TEC.

A fan may serve to move the heat away from the TEC and prevent thermal runaway. However, the fan should not blow air on or at the laser itself. Water cooling methods may also be employed for temperature regulation. Although thermal grease is acceptable for TO can and HHL lasers, it should not be used with two-tab C-mount or D-mount lasers, since it can creep, eventually contaminating the laser facet. Pyrolytic graphite is an acceptable alternative to thermal grease for these cases. Solder can also be used to thermally regulate two-tab C-mount lasers, although controlling the thermal resistance at the interface is important for best results. Solder is not recommended for thermal regulation of D-mount or HHL lasers.

For assistance in picking a suitable temperature controller for your application please contact Tech Support.

Carefully Make Electrical Connections
When making electrical connections, care must be taken. The flux fumes created by soldering can cause laser damage, so care must be taken to avoid this.

Solder can be avoided entirely for two-tab C-mount and TO can lasers by using the LDMC20 or LDM90 laser mounts, respectively. If soldering to the tabs on a two-tab C-mount, solder with the C-mount already attached to a heat sink to avoid unnecessary heating of the laser chip. We do not recommend soldering lasers in TO can packages.

Although soldering to the leads of our HHL lasers is possible, we generally recommend using cables specifically designed for HHL packages. Thorlabs' CAB4007B LD / TEC cable is specifically designed to connect any standard 10-pin HHL laser package directly to the ITC400xQCL series of laser diode and TEC controllers. The CAB4007A LD / TEC cable can be used to connect an ITC400xQCL controller directly to the LCM100(/M) mount. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the distributed feedback lasers' or the up to 8 A maximum current of the Fabry-Perot lasers' internal thermoelectric coolers. If soldering to the leads on an HHL package, the maximum soldering temperature and time are 250 °C and 10 seconds, respectively.

For D-mount lasers, solder should never be used; wire bonding or probe connections are the only recommended methods.

Minimize Physical Handling
As any interaction with the package carries the risk of contamination and damage, any movement of the laser should be planned in advance and carefully carried out. It is important to avoid mechanical shocks. Dropping the laser package from any height can cause the unit to permanently fail.

Choosing a Collimating Lens

Since the output of our MIR lasers is highly divergent, collimating optics are necessary. Aspheric lenses, which are corrected for spherical aberration, are commonly chosen when the desired beam diameter is between 1 - 5 mm. The simple example below illustrates the key specifications to consider when choosing the correct lens for a given application. Please note that lasers in a high heat load (HHL) package are already collimated using a lens integrated into the package.

The following example uses our previous generation 3.8 µm Interband Cascade Laser.

Key Specifications

  • Center Wavelength: 3.80 µm
  • Parallel Beam Divergence Angle: 40°
  • Perpendicular Beam Divergence Angle: 60°
  • Desired Collimated Beam Diameter: 4 mm (Major Axis)

The specifications for the laser indicate that the typical parallel and perpendicular FWHM divergences are 40° and 60°, respectively. Therefore, as the light propagates, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in your calculations (in this case, 60°).

laser diode collimation drawing
θ = Divergence Angle
Ø = Beam Diameter

Using the information above, the focal length needed to obtain the desired beam diameter can be calculated:

focal length calculation

This information allows the appropriate collimating lens to be selected. Thorlabs offers a large selection of black diamond aspheric lenses for the mid-IR spectral range. Since this laser emits at 3.80 µm, the best AR coating is our -E coating, which provides Ravg < 0.6% per surface from 3 to 5 µm. The lenses with focal lengths closest to the calculated value of 3.46 mm are our 390036-E (unmounted) or C036TME-E (mounted) Molded Aspheric Lenses, which have f = 4.00 mm. Plugging this focal length back into the equation shown above gives a final beam diameter of 4.62 mm along the major axis.

Next, we verify that the numerical aperture (NA) of the lens is larger than the NA of the laser:

NALens = 0.56

NALaser ~ sin (30°) = 0.5

NALens > NALaser

Since NALens > NALaser, the 390036-E or C036TME-E lenses will give acceptable beam quality. However, by using the FWHM beam diameter, we have not accounted for a significant fraction of the beam power. A better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 beam diameter is approximately equal to 1.7X the FWHM diameter. The 1/e2 beam diameter is therefore a more conservative estimate of the beam size, containing more of the laser's intensity. Using this value significantly reduces far-field diffraction (since less of the incident light is clipped) and increases the power delivered after the lens.

A good rule of thumb is to pick a lens with an NA of twice the NA of the laser diode. For example, either the 390037-E or the C037TME-E could be used as these lenses each have an NA of 0.85, which a little less than twice that of our IF3800CM2 laser (NA 0.5). Compared to the first set of lenses we identified, these have a shorter focal length of 1.873 mm, resulting in a smaller final beam diameter of 2.16 mm.

Beam Profile Characterization of a Mid-IR Laser

Because quantum cascade lasers (QCLs) and interband cascade lasers (ICLs) have intrinsically large divergence angles, it is necessary to install collimating optics in front of the laser face, as shown in the Collimation tab. We are frequently asked what beam quality can be reasonably expected once the beam has been collimated. This tab presents an M2 measurement we performed using our previous generation 3.80 µm Interband Cascade Laser.

For this system, we obtained M= 1.2 ± 0.08 in the parallel direction and M= 1.3 ± 0.2 in the perpendicular direction. While this is just one example, we believe these results to be representative of well-collimated mid-IR lasers manufactured by Thorlabs, as corroborated by supplementary measurements we have performed in-house.

Experimental Setup

Pyroelectric Camera Upstream of Focus
Click to Enlarge

Pyroelectric Camera Upstream of Focus
Pyroelectric Camera Downstream of Focus
Click to Enlarge

Pyroelectric Camera Downstream of Focus

The apparatus we used to determine M2 is shown schematically in the figure above. In order to ensure that our results were rigorous, all data acquisition and analysis were consistent with the ISO11146 standard.

The previous generation Interband Cascade Laser used for this measurement emitted CW laser light with a center wavelength of 3.781 µm. Our LDMC20 temperature-stabilized mount held the laser's temperature at 25 °C. The output beam was collimated by a C037TME-E lens located immediately downstream of the laser face. This lens was selected because of its large NA of 0.85 (which helped maximize collection of the emitted light) and because of its AR coating (Ravg < 0.6% per surface from 3 µm to 5 µm). We measured 10 mW of output power after the lens.

A pyroelectric camera (Spiricon Pyrocam IV) with 80 µm square pixels was scanned along the beam propagation direction, and the beam width was measured along the parallel and perpendicular directions using the second-order moment (D4σ) definition. Hyperbolas were fit to the beam width to extract M2 for each direction. The camera's internal chopper was triggered at 50 Hz since the pyroelectric effect is sensitive to changes in temperature rather than absolute temperature differences. A ZnSe window was present in front of the detector array to help minimize visible light contributions to the signal.

Beam Profile Measurement
Click to Enlarge

D4σ Beam Width of Collimated IF3800CM2 Laser

Data Analysis
Presented to the right are the second-order moment (D4σ) beam widths for the parallel and perpendicular directions as a function of distance from the laser face (denoted as z). Along the parallel direction, we obtained a minimum beam width of 1.5 mm, while along the perpendicular direction, we obtained a minimum beam width of 1.3 mm. The spatial profiles we observed at the two minimum beam width positions, as obtained by the pyroelectric camera, are shown below.

The divergence of the beam can be described by a hyperbola, as written in Equation 1:

Hyperbola for M^2 Equation (Eq. 1)

In order to obtain the hyperbola coefficients a, b, and c for the parallel and perpendicular directions, we fit the discrete beam width measurements along each direction to hyperbolas, as shown in the graph to the right. These coefficients were substituted into Equation 2 (taking λ = 3.781 µm) to yield M2.

M^2 Equation (Eq. 2)

The hyperbola coefficients and M2 values derived by this method are listed in the table below.

Value Parallel Perpendicular
a 3.6 ± 0.1 mm2 9.7 ± 0.2 mm2
b -0.0096 ± 0.0007 mm -0.0268 ± 0.0008 mm
c (1.61 ± 0.08) × 10-5 (2.27 ± 0.08) × 10-5
M2 1.2 ± 0.08 1.3 ± 0.2

The 0.85 NA of the collimating lens we used is the largest NA of any lens for this wavelength range that is offered in our catalog. Despite this large NA, we observed lobes in the far field (shown by the figure below) that are consistent with clipping of the laser-emitted light. An ideal measurement would not contain these artifacts.

As shown by the graph above and to the right, we observed significant astigmatism in the collimated beam: the beam waist of the parallel direction occurred around z = 300 mm, while the beam waist of the perpendicular direction occurred around z = 600 mm. This astigmatism corresponds closely to what is expected for this laser, given that the IF3800CM2 laser is specified with a parallel FWHM beam divergence of 40° and a perpendicular FWHM beam divergence of 60°.

Beam Profile from Pyrocam
Beam Profile at Beam Waist of Parallel Direction
(Each Pixel is 80 µm Square)
Beam Profile from Pyrocam
Beam Profile at Beam Waist of Perpendicular Direction
(Each Pixel is 80 µm Square)
Selected Distributed Feedback QCLsa
Item # Nominal Center Frequency Targeted Gas(es)
ID3250HHLH 3076 cm-1 (3.25 µm) CH4 (Methane)
QD4472HH 2236 cm-1 (4.472 µm) N2O (Nitrous Oxide)
QD4602HH 2173 cm-1 (4.602 µm) CO (Carbon Monoxide)
QD5250C2 1905 cm-1 (5.25 µm) NO (Nitric Oxide)
QD5263HH 1900 cm-1 (5.263 µm) NO (Nitric Oxide)
QD6134HH 1630 cm-1 (6.134 µm) NO2 (Nitrogen Dioxide)
QD7416HH 1348 cm-1 (7.416 µm) SO2 (Sulfur Dioxide)
QD7716HH 1296 cm-1 (7.716 µm) N2O (Nitrous Oxide)
QD7901HH 1266 cm-1 (7.901 µm) H2S (Hydrogen Sulfide)
QD8050CM1 1242 cm-1 (8.05 µm) CH4 (Methane)
HONO (Nitrous Acid)
QD8912HH 1122.1 cm-1 (8.912 µm) NH3 (Ammonia)
QD9062HH 1103.5 cm-1 (9.062 µm) NH3 (Ammonia)
QD9550C2 1047 cm-1 (9.55 µm) NH3 (Ammonia)
QD9697HH 1031 cm-1 (9.697 µm) O3 (Ozone)
QD10530HH 949.7 cm-1 (10.530 µm) C2H4 (Ethylene)
QD10549HH 948 cm-1 (10.549 µm) SF6 (Sulfur Hexafluoride)
QD10622HH 941 cm-1 (10.622 µm) N2H4 (Hydrazine)
  • This table is intended as a reference. Each DFB QCL and ICL is a unique device with its own spectrum, and does not necessarily emit at the exact absorption line required for a given experiment. To verify that the QCL you receive will meet your needs, please download its data sheet. Click "Choose Item" below, then click on the Docs icon (Docs Icon) next to the serial number of the laser.

Gas-Phase Spectroscopy Using Distributed Feedback Lasers

Distributed Feedback Quantum and Interband Cascade Lasers (DFB QCLs and ICLs) offer many attractive features for spectroscopy. They emit at a single wavelength within the mid-IR, where many gaseous species characteristically absorb. Moreover, their emission wavelength is easily tuned (typical tuning range: 1 - 5 cm-1) by changing the drive current and operating temperature of the laser, making them ideal for isolating narrow gas absorption lines. Finally, quantum cascade lasers offer relatively high output power (typically 40 - 120 mW at rollover current), helping improve measurement sensitivity. ICLs will typically have a low output power, but a far lower power consumption.

Thorlabs' DFB QCLs emit at wavelengths that range from 4.00 to 11.00 µm (2500 cm-1 to 909 cm-1), while our DFB ICLs emit at wavelengths that range from 3.00 to 3.50 µm (3333 cm-1 to 2857 cm-1). If we do not stock the wavelength required for your application, custom wavelengths are available by contacting Tech Support.

The tuning range of individual DFB QCLs and ICLs depends greatly on the actual laser device. Each DFB QCL or ICL is a unique device with its own threshold current, rollover current, and spectrum. Since the wavelength and power of DFB QCLs and ICLs change over the tuning range, operating the lasers near the rollover current is not always desirable in spectroscopy measurements, which require specific wavelengths. The driving current and operating temperature of DFB QCLs and ICLs can be adjusted to change the output signal to the desired wavelength and power.

DFB QCLs and ICLs are ideal for use in photoacoustic spectroscopy, a technique based on the photoacoustic effect that is able to accurately detect trace gas concentrations for a wide variety of applications. Thorlabs offers an Acoustic Detection Module that can be used with our DFB QCLs and ICLs to build custom QEPAS sensors that target the absorption of a specific gas. We also offer a Quartz-Enhanced Photoacoustic Sensor that targets a methane absorption line to detect trace amounts of methane in a gas.

 

Tuning Example
To demonstrate the tunability of these lasers, we measured the center wavelength of a previous-generation QD4580CM1 DFB QCL as a function of drive current, from threshold to near rollover, at 15 °C and 25 °C. Over the entire temperature and drive current range, we obtained center wavelengths from 4.568 µm to 4.586 µm (2189.14 cm-1 to 2180.77 cm-1), spanning a range of 18 nm (8.37 cm-1), with output power ranging from 3.2 mW (at threshold current) to 39.1 mW (at near-rollover current). Since the laser is capable of operating at 35 °C, even broader wavelength tuning is also achievable.

DFB QCL Temperature Tuning
Click to Enlarge

DFB QCL Center Frequency as Function of Temperature and Drive Current
Sample QD4580CM1a Spectrum and Output Power
Current 15 °C 25 °C
Center Frequency Output
Power
Center Frequency Output
Power
300 mA 2189.14 cm-1 (4.568 µm) 8.4 mW 2187.34 cm-1 (4.572 µm) 3.2 mW
350 mA 2188.12 cm-1 (4.570 µm) 19.6 mW 2186.26 cm-1 (4.574 µm) 11.9 mW
400 mA 2186.92 cm-1 (4.573 µm) 28.3 mW 2185.05 cm-1 (4.577 µm) 18.9 mW
450 mA 2185.71 cm-1 (4.575 µm) 33.7 mW 2183.78 cm-1 (4.579 µm) 23.5 mW
500 mA 2184.33 cm-1 (4.578 µm) 37.1 mW 2182.34 cm-1 (4.582 µm) 26.6 mW
550 mA 2182.76 cm-1 (4.581 µm) 39.1 mW 2180.77 cm-1 (4.586 µm) 28.2 mW
  • The QD4580CM1 is a previous-generation laser.
Laser Packages of QCLs
Click to Enlarge

Some of Our Available Packages
Wire Bonding
Click for Details

Wire Bonding a Quantum Cascade Laser on a C-Mount

Custom & OEM Quantum Cascade and Interband Cascade Lasers

At our semiconductor manufacturing facility in Jessup, Maryland, we build fully packaged mid-IR lasers and gain chips. Our engineering team performs in-house epitaxial growth, wafer fabrication, and laser packaging. We maintain chip inventory from 3 µm to 12 µm, and our vertically integrated facilities are well equipped to fulfill unique requests.

High-Power Fabry-Perot QCLs
For Fabry-Perot lasers, we can reach multi-watt output power on certain custom orders. The available power depends upon several factors, including the wavelength and the desired package.

DFB QCLs at Custom Wavelengths
For distributed feedback (DFB) lasers, we can deliver a wide range of center wavelengths with user-defined wavelength precision. Our semiconductor specialists will take your application requirements into account when discussing the options with you.

The graphs below and photos to the right illustrate some of our custom capabilities. Please visit our semiconductor manufacturing capabilities presentation to learn more.

Contact Thorlabs

Custom QCL Wavelengths
Click to Enlarge

Available Wavelengths for Custom QCLs and ICLs
High-Power QCLs
Click to Enlarge

Maximum Output Power of Custom Fabry-Perot QCLs
QCL Gain Chips
Click to Enlarge

Electroluminescence Spectra of Available Gain Chip Material

Insights into QCLs and ICLs

Scroll down to read about:

  • Labels Used to Identify Perpendicular and Parallel Components
  • QCLs and ICLs: Operating Limits and Thermal Rollover

Click here for more insights into lab practices and equipment.

 

Labels Used to Identify Perpendicular and Parallel Components

Figure 1: Polarized light is often described as the vector sum of two components: one whose electric field oscillates in the plane of incidence (parallel), and one whose electric field oscillates perpendicular to the plane of incidence. Note that the oscillations of the electric field are also orthogonal to the beam's propagation direction.

When polarized light is incident on a surface, it is often described in terms of perpendicular and parallel components. These are orthogonal to each other and the direction in which the light is propagating (Figure 1).

Labels and symbols applied to the perpendicular and parallel components can make it difficult to determine which is which. The table identifies, for a variety of different sets, which label refers to the perpendicular component and which to the parallel.

Labels Notes

Perpendicular      Parallel     
s p Senkrecht (s) is 'perpendicular' in German. Parallel begins with 'p.'
TE TM TE: Transverse electric field.
TM: Transverse magnetic field.
The transverse field is perpendicular to the plane of incidence. Note that electric and magnetic fields are orthogonal.
// ⊥ and // are symbols for perpendicular and parallel, respectively.
σ π The Greek letters corresponding to s and p are σ and π, respectively.
Sagittal Tangential A sagittal plane is a longitudinal plane that divides a body.

The perpendicular and parallel directions are referenced to the plane of incidence, which is illustrated in Figure 1 for a beam reflecting from a surface. Together, the incident ray and the surface normal define the plane of incidence, and the incident and reflected rays are both contained in this plane. The perpendicular direction is normal to the plane of incidence, and the parallel direction is in the plane of incidence.

The electric fields of the perpendicular and parallel components oscillate in planes that are orthogonal to one another. The electric field of the perpendicular component oscillates in a plane perpendicular to the plane of incidence, while the electric field of the parallel component oscillated in the plane of incidence. The polarization of the light beam is the vector sum of the perpendicular and parallel components.

Normally Incident Light
Since a plane of incidence cannot be defined for normally incident light, this approach cannot be used to unambiguously define perpendicular and parallel components of light. There is limited need to make the distinction, since under conditions of normal incidence the reflectivity is the same for all components of light.

Date of Last Edit: Mar. 5, 2020

 

QCLs and ICLs: Operating Limits and Thermal Rollover

L-I curves for QCL mount held at different temperatures
Click to Enlarge

Figure 3: This set of L-I curves for a QCL laser illustrates that the mount temperature can affect the peak operating temperature, but that using a temperature controlled mount does not remove the danger of applying a driving current large enough to exceed the rollover point and risk damaging the laser.
L-I curve for QCL laser, rollover region indicated
Click to Enlarge

Figure 2: This example of an L-I curve for a QCL laser illustrates the typical non-linear slope and rollover region exhibited by QCL and ICL lasers. Operating parameters determine the heat load carried by the lasing region, which influences the peak output power. This laser was installed in a temperature controlled mount set to 25 °C.

The light vs. driving current (L-I) curves measured for quantum and interband cascade Lasers (QCLs and ICLs) include a rollover region, which is enclosed by the red box in Figure 2.

The rollover region includes the peak output power of the laser, which corresponds to a driving current of just under 500 mA in this example. Applying higher drive currents risks damaging the laser.

Laser Operation
These lasers operate by forcing electrons down a controlled series of energy steps, which are created by the laser's semiconductor layer structure and an applied bias voltage. The driving current supplies the electrons.

An electron must give up some of its energy to drop down to a lower energy level. When an electron descends one of the laser's energy steps, the electron loses energy in the form of a photon. But, the electron can also lose energy by giving it to the semiconductor material as heat, instead of emitting a photon.

Heat Build Up
Lasers are not 100% efficient in forcing electrons to surrender their energy in the form of photons. The electrons that lose their energy as heat cause the temperature of the lasing region to increase.

Conversely, heat in the lasing region can be absorbed by electrons. This boost in energy can scatter electrons away from the path leading down the laser's energy steps. Later, scattered electrons typically lose energy as heat, instead of as photons.

As the temperature of the lasing region increases, more electrons are scattered, and a smaller fraction of them produce light instead of heat. Rising temperatures can also result in changes to the laser's energy levels that make it harder for electrons to emit photons. These processes work together to increase the temperature of the lasing region and to decrease the efficiency with which the laser converts current to laser light.

Operating Limits are Determined by the Heat Load
Ideally, the slope of the L-I curve would be linear above the threshold current, which is around 270 mA in Figure 2. Instead, the slope decreases as the driving current increases, which is due to the effects from the rising temperature of the lasing region. Rollover occurs when the laser is no longer effective in converting additional current to laser light. Instead, the extra driving creates only heat. When the current is high enough, the strong localized heating of the laser region will cause the laser to fail.

A temperature controlled mount is typically necessary to help manage the temperature of the lasing region. But, since the thermal conductivity of the semiconductor material is not high, heat can still build up in the lasing region. As illustrated in Figure 3, the mount temperature affects the peak optical output power but does not prevent rollover.

The maximum drive current and the maximum optical output power of QCLs and ICLs depend on the operating conditions, since these determine the heat load of the lasing region.

Date of Last Edit: Dec. 4, 2019


Posted Comments:
user  (posted 2022-02-16 10:22:33.18)
The tabulated data for the QF4650HHLH indicates that it has an output power of 1500 W. Likely a typo, should be 1500 mW.
cdolbashian  (posted 2022-02-16 11:22:53.0)
Thank you for finding this error on our website! The value should indeed be 1500mW. We will be correcting it in the near future.
Jean-Michel Melkonian  (posted 2021-07-01 09:11:20.76)
Dear thorlabs, do you offer solutions (or are planning to) to modulate the QCL current at frequencies above 100 kHz ? 1MHz for instance. This should require special electronics, and careful impedance matching, something that your standard controllers cannot do. This has applications in free space communications thanks
YLohia  (posted 2021-07-01 10:30:11.0)
Hello, thank you for contacting Thorlabs. Unfortunately, we currently do not have any plans of offering such solutions. That being said, we will consider something like this in the future.
user  (posted 2016-10-14 11:21:05.987)
We need the MIR light visualize to check collimation. Which part number should we choose. Let us know the web link?
jlow  (posted 2016-10-14 12:08:44.0)
Response from Jeremy at Thorlabs: You can use the VRC6 to help visualize the MIR light.

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput PowerOperating
Current
Operating
Voltage
Beam DivergenceLaser ModePackage
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single Transverse ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single Transverse ModeØ5.6 mm
LP405C1405 nm30 mW75 mA4.3 V1.4 mrad1.4 mradSingle Transverse ModeØ3.8 mm, SM Pigtail with Collimator
L405G2405 nm35 mW50 mA4.9 V10°21°Single Transverse ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single Transverse ModeØ5.6 mm
L405A1405 nm175 mW (Min)150 mA5.0 V20°Single Transverse ModeØ5.6 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
LP450-SF25450 nm25 mW75 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L450G3450 nm100 mW (Min)80 mA5.2 V8.4°21.5°Single Transverse ModeØ3.8 mm
L450G2450 nm100 mW (Min)80 mA5.0 V8.4°21.5°Single Transverse ModeØ5.6 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single Transverse ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP488-SF20G488 nm20 mW80 mA5.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single Transverse ModeØ5.6 mm
LP515-SF3515 nm3 mW50 mA5.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single Transverse ModeØ5.6 mm
LP520-SF15A520 nm15 mW100 mA7.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP520-SF15520 nm15 mW140 mA6.5 V--Single Transverse ModeØ9 mm, SM Pigtail
L520A1520 nm30 mW (Min)80 mA5.5 V22°Single Transverse ModeØ5.6 mm
PL520520 nm50 mW250 mA7.0 V22°Single Transverse ModeØ3.8 mm
L520P50520 nm45 mW150 mA7.0 V22°Single Transverse ModeØ5.6 mm
L520A2520 nm110 mW (Min)225 mA5.9 V22°Single Transverse ModeØ5.6 mm
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single Transverse ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW60 mA2.2 V--Single Transverse ModeØ9.0 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single Transverse ModeØ5.6 mm
HL6312G635 nm5 mW50 mA<2.7 V31°Single Transverse ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW60 mA2.2 V31°Single Transverse ModeØ9 mm
HL6322G635 nm15 mW75 mA2.4 V30°Single Transverse ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single Transverse ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single Transverse ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single Transverse ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L637G1637 nm1200 mW1100 mA2.5 V10°32°MultimodeØ9 mm (non-standard)
L638P040638 nm40 mW92 mA2.4 V10°21°Single Transverse ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single Transverse ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single Transverse ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.4 V21°Single Transverse ModeØ5.6 mm
HL6323MG639 nm30 mW100 mA2.5 V8.5°30°Single Transverse ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW110 mA2.5 V--Single Transverse ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW120 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6366DG642 nm80 mW150 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6385DG642 nm150 mW250 mA2.6 V17°Single Transverse ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single Transverse ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW75 mA2.6 V8.5°22°Single Transverse ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single Transverse ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single Transverse ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single Transverse ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single Transverse ModeØ5.6 mm
L670VH1670 nm1 mW2.5 mA2.6 V10°10°Single Transverse ModeTO-46
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single Transverse ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single Transverse ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single Transverse ModeØ5.6 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW70 mA2.3 V21°Single Transverse ModeØ5.6 mm
HL6738MG690 nm30 mW85 mA2.5 V8.5°19°Single Transverse ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
LP730-SF15730 nm15 mW70 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7302MG730 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
L760VH1760 nm0.5 mW3 mA (Max)2.2 V12°12°Single FrequencyTO-46
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L763VH1763 nm0.5 mW3 mA (Max)2.0 V10°10°Single FrequencyTO-46
DBR767PN767 nm23 mW220 mA1.87 V--Single FrequencyButterfly, PM Pigtail
DBR770PN770 nm35 mW220 mA1.92 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single Transverse ModeØ5.6 mm
DBR780PN780 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single Transverse ModeØ5.6 mm
LPS-PM785-FC785 nm6.5 mW60 mA---Single Transverse ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single Transverse ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single Transverse ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV785P785 nm50 mW410 mA2.1 V--Single FrequencyButterfly, PM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW125 mA2.0 V10°17°Single Transverse ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
FPL785P785 nm200 mW500 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single Transverse ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Transverse Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single Transverse ModeØ9 mm
FPV785M785 nm600 mW1100 mA1.9 V--MultimodeButterfly, MM Pigtail
L795VH1795 nm0.25 mW1.2 mA1.8 V20°12°Single FrequencyTO-46
DBR795PN795 nm40 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR808PN808 nm42 mW250 mA2 V--Single FrequencyButterfly, PM Pigtail
LP808-SA60808 nm60 mW150 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-808-0150808 nm150 mW180 mA1.9 V17°Single Transverse ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
FPL808P808 nm200 mW600 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL808S808 nm200 mW750 mA2.3 V--Single Transverse ModeButterfly, SM Pigtail
L808H1808 nm300 mW400 mA2.1 V14°Single Transverse ModeØ9 mm
LD808-SE500808 nm500 mW750 mA2.2 V14°Single Transverse ModeØ9 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
DBR816PN816 nm45 mW250 mA1.95 V--Single FrequencyButterfly, PM Pigtail
LP820-SF80820 nm80 mW230 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single Transverse ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single Transverse ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW50 mA2.0 V--Single Transverse ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
L830H1830 nm250 mW3 A (Max)2 V10°Single Transverse ModeØ9 mm
FPL830P830 nm300 mW900 mA2.22 V--Single Transverse ModeButterfly, PM Pigtail
FPL830S830 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single Transverse ModeØ9 mm
LD830-MA1W830 nm1 W2 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single Transverse ModeØ5.6 mm
L850VH1850 nm1 mW6 mA (Max)2 V12°12°Single FrequencyTO-46
L850P010850 nm10 mW50 mA2 V10°30°Single Transverse ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single Transverse ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV852P852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, PM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
LP852-SF60852 nm60 mW150 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P100852 nm100 mW120 mA1.9 V28°Single Transverse ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single Transverse ModeØ9 mm
L852SEV1852 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
L852H1852 nm300 mW415 mA (Max)2 V15°Single Transverse ModeØ9 mm
FPL852P852 nm300 mW900 mA2.35 V--Single Transverse ModeButterfly, PM Pigtail
FPL852S852 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single Transverse ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single Transverse ModeØ5.6 mm
L895VH1895 nm0.2 mW1.4 mA1.6 V20°13°Single FrequencyTO-46
DBR895PN895 nm12 mW300 mA2 V--Single FrequencyButterfly, PM Pigtail
LP904-SF3904 nm3 mW30 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L904P010904 nm10 mW50 mA2.0 V10°30°Single Transverse ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
DBR935PN935 nm13 mW300 mA1.75 V--Single FrequencyButterfly, PM Pigtail
LP940-SF30940 nm30 mW90 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single Transverse ModeØ9 mm
L960H1960 nm250 mW400 mA2.1 V11°12°Single Transverse ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
FPV976P976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, PM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L976SEV1976 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
BL976-SAG3976 nm300 mW470 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single Transverse ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single Transverse ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW50 mA1.5 V10°35°Single Transverse ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
LP980-SA60980 nm60 mW230 mA2.0 V--Single Transverse ModeØ9.0 mm, SM Pigtail
L980H1980 nm200 mW300 mA (Max)2.0 V13°Single Transverse ModeØ9 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
DBR1060SN1060 nm130 mW650 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1060PN1060 nm130 mW650 mA1.8 V--Single FrequencyButterfly, PM Pigtail
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single Transverse ModeØ9 mm
L1064H11064 nm300 mW700 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
L1064H21064 nm450 mW1100 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
DBR1083PN1083 nm100 mW500 mA1.75 V--Single FrequencyButterfly, PM Pigtail
L1270P5DFB1270 nm5 mW15 mA1.1 VSingle FrequencyØ5.6 mm
L1290P5DFB1290 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1310-PAD21310 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single Transverse ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single Transverse ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1330P5DFB1330 nm5 mW14 mA1.0 VSingle FrequencyØ5.6 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1425-PAG5001425 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL1436-PAG5001436 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1456-PAG5001456 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1470P5DFB1470 nm5 mW19 mA1.0 VSingle FrequencyØ5.6 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
L1490P5DFB1490 nm5 mW24 mA1.0 VSingle FrequencyØ5.6 mm
L1510P5DFB1510 nm5 mW20 mA1.0 VSingle FrequencyØ5.6 mm
L1530P5DFB1530 nm5 mW21 mA1.0 VSingle FrequencyØ5.6 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1550-PAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.0 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, PM Pigtail
ULN15PC1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
ULN15PT1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single Transverse ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
DFB15501555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550N1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550P1555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB1550PN1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
L1570P5DFB1570 nm5 mW25 mA1.0 VSingle FrequencyØ5.6 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1054T1625 nm200 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
DFB16421642 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1642P1642 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB16461646 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1646P1646 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1059S1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
DFB16501650 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1650P1650 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
DFB16541654 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1654P1654 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1940S1940 nm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single Transverse ModeChip on Submount
ID3250HHLH3.00 - 3.50 µm (DFB)5 mW400 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
IF3400T13.40 µm (FP)30 mW300 mA4 V40°70°Single Transverse ModeØ9 mm
ID3750HHLH3.50 - 4.00 µm (DFB)5 mW300 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF3850T13.85 µm (FP)200 mW600 mA (Max)13.5 V30°40°Single Transverse ModeØ9 mm
QF3850HHLH3.85 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF4040HHLH4.05 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD4500CM14.00 - 5.00 µm (DFB)40 mW500 mA (Max)10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QD4500HHLH4.00 - 5.00 µm (DFB)80 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4050T24.05 µm (FP)70 mW250 mA12 V30°40°Single Transverse ModeØ9 mm
QF4050C24.05 µm (FP)300 mW400 mA12 V3042Single Transverse ModeTwo-Tab C-Mount
QF4050T14.05 µm (FP)300 mW600 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single Transverse ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single Transverse ModeD-Mount
QD4472HH4.472 µm (DFB)85 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4600T24.60 µm (FP)200 mW500 mA (Max)13.0 V30°40°Single Transverse ModeØ9 mm
QF4600T14.60 µm (FP)400 mW800 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4600C24.60 µm (FP)600 mW600 mA12 V30°42°Single Transverse ModeTwo-Tab C-Mount
QF4600T34.60 µm (FP)1000 mW800 mA (Max)13 V30°40°Single Transverse ModeØ9 mm
QF4600D44.60 µm (FP)2500 mW1800 mA12.5 V40°30°Single Transverse ModeD-Mount
QF4600D34.60 µm (FP)3000 mW1700 mA12.5 V30°40°Single Transverse ModeD-Mount
QD4602HH4.602 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4650HHLH4.65 µm (FP)1500 mW (Min)1100 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD5500CM15.00 - 6.00 µm (DFB)40 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5500HHLH5.00 - 6.00 µm (DFB)150 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD5250C25.20 - 5.30 µm (DFB)60 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5263HH5.263 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6500CM16.00 - 7.00 µm (DFB)40 mW650 mA (Max)10 V35°50°Single FrequencyTwo-Tab C-Mount
QD6500HHLH6.00 - 7.00 µm (DFB)80 mW600 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6134HH6.134 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500CM17.00 - 8.00 µm (DFB)40 mW600 mA (Max)10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500HHLH7.00 - 8.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500DM17.00 - 8.00 µm (DFB)100 mW600 mA (Max)11.5 V40°55°Single FrequencyD-Mount
QD7416HH7.416 µm (DFB)100 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7716HH7.716 µm (DFB)30 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF7900HB7.9 µm (FP)700 mW1600 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD7901HH7.901 µm (DFB)50 mW700 mA (Max)10 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD8050CM18.00 - 8.10 µm (DFB)100 mW1000 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW900 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF8450C28.45 µm (FP)300 mW750 mA9 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF8500HB8.5 µm (FP)500 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD8650CM18.60 - 8.70 µm (DFB)50 mW900 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8912HH8.912 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9500CM19.00 - 10.00 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9062HH9.062 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF9150C29.15 µm (FP)200 mW850 mA11 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF9200HB9.2 µm (FP)250 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF9500T19.5 µm (FP)300 mW550 mA12 V40°55°Single Transverse ModeØ9 mm
QD9550C29.50 - 9.60 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single Transverse ModeTwo-Tab C-Mount
QD9697HH9.697 µm (DFB)80 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10500CM110.00 - 11.00 µm (DFB)40 mW600 mA (Max)10 V40°55°Single FrequencyTwo-Tab C-Mount
QD10500HHLH10.00 - 11.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10530HH10.530 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10549HH10.549 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10622HH10.622 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL

The rows shaded green above denote single-frequency lasers.
Back to Top

3.00 - 4.00 µm Center Wavelength DFB ICL

Item # Info Center Wavelengtha Power (Typ.)b Maximum Operating Currentb,c Package Wavelength Tested Laser Mode Targeted Gasd
ID3250HHLH info Varies from 3.00 to 3.50 µm
(3333 to 2857 cm-1)
5 mW 400 mA High Heat Load with
Horizontal Emissione
Yes Single Frequencyf CH4 (Methane)g
ID3750HHLH info Varies from 3.50 to 4.00 µm
(2857 to 2500 cm-1)
5 mW 300 mA High Heat Load with
Horizontal Emissione
Yes Single Frequencyf N/A
  • Distributed Feedback Lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Please see the the blue info icon () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Additional information on the high heat load package with horizontal emission is available at its web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of methane can be found by clicking the blue info icon above () and selecting the Methane tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemID3250HHLH Support Documentation
ID3250HHLHCustomer Inspired! DFB ICL, 3.00 - 3.50 μm CWL, 2 cm⁻¹ Tuning, 5 mW, Horizontal HHL
$11,526.64
Lead Time
Choose ItemID3750HHLH Support Documentation
ID3750HHLHDFB ICL, 3.50 - 4.00 μm CWL, 2 cm⁻¹ Tuning, 5 mW, Horizontal HHL
$11,526.64
Today
Back to Top

3.40 µm Center Wavelength Fabry-Perot ICL

Item # Info Center Wavelengtha Power (Min)b Max
Operating Currentb
Packagec Pin Code Monitor
Photodiode
Wavelength Tested Laser Mode
IF3400T1 info 3.40 µm (2941 cm-1) 30 mW 600 mA Ø9 mm H No Yes Single Transverse Mode
  • Fabry-Perot Lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • The Ø9 mm package for these diodes is 4.3 mm (0.17") thick, which is more than the standard 1.5 mm (0.06"). The laser will still be compatible with all Ø9 mm laser mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemIF3400T1 Support Documentation
IF3400T1Fabry-Perot Interband Cascade Laser, 3.40 μm CWL, 30 mW, Ø9 mm, H Pin Code
$4,285.00
Today
Back to Top

3.85 - 4.65 µm Center Wavelength Fabry-Perot QCLs

Item # Info Center Wavelengtha Power (Min)b Typical/Max Operating Currentb Package Wavelength Tested Laser Mode Targeted Gasc
QF3850T1 info 3.85 µm (2597 cm-1) 200 mW 600 mA (Max) Ø9 mmd Yes Single Transverse
Mode
N/A
QF3850HHLH info 3.85 µm (2597 cm-1) 320 mW 400 mA / 1100 mA High Heat Load with
Horizontal Emissione
QF4040HHLH info 4.04 µm (2475 cm-1) 320 mW 400 mA / 1100 mA High Heat Load with
Horizontal Emissione
QF4050T2 info 4.05 µm (2469 cm-1) 70 mW 250 mA / 400 mA Ø9 mmd
QF4050C2 info 4.05 µm (2469 cm-1) 300 mW 400 mA / 500 mA Two-Tab C-Mount
QF4050T1 info 4.05 µm (2469 cm-1) 300 mW 600 mA (Max) Ø9 mmd
QF4050D2 info 4.05 µm (2469 cm-1) 800 mW 750 mA / 1300 mA D-Mountf
QF4050D3 info 4.05 µm (2469 cm-1) 1200 mW 1000 mA / 1800 mA D-Mountf
QF4600T2 info 4.60 µm (2174 cm-1) 200 mW 500 mA (Max) Ø9 mmd
QF4600T1 info 4.60 µm (2174 cm-1) 400 mW 800 mA (Max) Ø9 mmd
QF4600C2 info 4.60 µm (2174 cm-1) 600 mW 600 mA / 800 mA Two-Tab C-Mount
QF4600T3 info 4.60 µm (2174 cm-1) 1000 mW 600 mA / 800 mA Ø9 mmd
QF4600D4 info 4.60 µm (2174 cm-1) 2500 mW 1800 mA / 2500 mA D-Mountf
QF4600D3 info 4.60 µm (2174 cm-1) 3000 mW 1700 mA / 2500 mA D-Mountf
QF4650HHLH info 4.65 µm (2151 cm-1) 1500 mW 800 mA / 1100 mA  High Heat Load with
Horizontal Emissione
  • Fabry-Perot Lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • Please see the the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • The Ø9 mm package for this laser is 4.30 mm (0.17") thick, which is more than the standard 1.50 mm (0.06"). The laser will still be compatible with all Ø9 mm laser mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications.
  • Additional information on the high heat load package with horizontal emission is available at its web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • Additional information on the D-mount package is available at its full web presentation.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF3850T1 Support Documentation
QF3850T1Fabry-Perot Quantum Cascade Laser, 3.85 μm CWL, 200 mW, Ø9 mm, H Pin Code
$3,860.96
Volume Pricing
Today
Choose ItemQF3850HHLH Support Documentation
QF3850HHLHFabry-Perot Quantum Cascade Laser, 3.85 μm CWL, 320 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQF4040HHLH Support Documentation
QF4040HHLHFabry-Perot Quantum Cascade Laser, 4.04 μm CWL, 320 mW, Horizontal HHL
$9,103.50
Lead Time
This item is out of stock and currently has a  lead time
Choose ItemQF4050T2 Support Documentation
QF4050T2Fabry-Perot Quantum Cascade Laser, 4.05 μm CWL, 70 mW, Ø9 mm, H Pin Code
$1,606.50
Today
Choose ItemQF4050C2 Support Documentation
QF4050C2Fabry-Perot Quantum Cascade Laser, 4.05 μm CWL, 300 mW, Two-Tab C-Mount
$4,964.09
Today
Choose ItemQF4050T1 Support Documentation
QF4050T1Fabry-Perot Quantum Cascade Laser, 4.05 μm CWL, 300 mW, Ø9 mm, H Pin Code
$3,860.96
Volume Pricing
Today
Choose ItemQF4050D2 Support Documentation
QF4050D2Fabry-Perot QCL, 3.90 - 4.20 μm CWL, 800 mW, D-Mount
$7,229.25
Today
Choose ItemQF4050D3 Support Documentation
QF4050D3Fabry-Perot QCL, 3.90 - 4.20 μm CWL, 1200 mW, D-Mount
$8,835.75
Today
Choose ItemQF4600T2 Support Documentation
QF4600T2Fabry-Perot Quantum Cascade Laser, 4.60 μm CWL, 200 mW, Ø9 mm, H Pin Code
$1,981.35
Volume Pricing
Today
Choose ItemQF4600T1 Support Documentation
QF4600T1Fabry-Perot Quantum Cascade Laser, 4.60 μm CWL, 400 mW, Ø9 mm, H Pin Code
$3,860.96
Volume Pricing
Today
Choose ItemQF4600C2 Support Documentation
QF4600C2Fabry-Perot Quantum Cascade Laser, 4.60 μm CWL, 600 mW, Two-Tab C-Mount
$4,964.09
Today
Choose ItemQF4600T3 Support Documentation
QF4600T3Fabry-Perot Quantum Cascade Laser, 4.60 μm CWL, 1000 mW, Ø9 mm, H Pin Code
$5,997.60
Volume Pricing
Today
Choose ItemQF4600D4 Support Documentation
QF4600D4Fabry-Perot QCL, 4.45 - 4.75 μm CWL, 2500 mW, D-Mount
$7,711.20
Today
Choose ItemQF4600D3 Support Documentation
QF4600D3Fabry-Perot QCL, 4.45 - 4.75 μm CWL, 3000 mW, D-Mount
$9,103.50
Today
Choose ItemQF4650HHLH Support Documentation
QF4650HHLHFabry-Perot Quantum Cascade Laser, 4.65 μm CWL, 1500 mW, Horizontal HHL
$9,103.50
Today
Back to Top

4.00 - 5.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning Range (Typ.) Power (Typ.)b Max Operating
Currentb
Package Wavelength Tested Laser Mode Targeted Gasc
QD4500CM1 info Varies from 4.00 to 5.00 µm
(2500 to 2000 cm-1)
2 cm-1 40 mW 500 mA Two-Tab C-Mount Yes Single Frequencyd N/A
QD4500HHLH info Varies from 4.00 to 5.00 µm
(2500 to 2000 cm-1)
3 cm-1 80 mW High Heat Load with
Horizontal Emissione
QD4472HH info 4.472 µm (2236 cm-1) 85 mW N2O
(Nitrous Oxide)f
QD4602HH info 4.602 µm (2173 cm-1) 150 mW 1000 mA CO
(Carbon Monoxide)g
  • Distributed Feedback Lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number. The absolute maximum power can be found by clicking on the blue info icon above (). Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • Additional information on the high heat load package with horizontal emission is available at its full web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • A comparison between the center wavelength ranges and the spectral lines of nitrous oxide can be found by clicking the blue info icons above () and selecting the Nitrous Oxide tab.
  • A comparison between the center wavelength ranges and the spectral lines of carbon monoxide can be found by clicking the blue info icons above () and selecting the Carbon Monoxide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD4500CM1 Support Documentation
QD4500CM1DFB QCL, 4.00 - 5.00 μm CWL, 2 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD4500HHLH Support Documentation
QD4500HHLHDFB QCL, 4.00 - 5.00 μm CWL, 3 cm⁻¹ Tuning, 80 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD4472HH Support Documentation
QD4472HHDFB QCL, 4.472 μm CWL, 3 cm⁻¹ Tuning, 85 mW, Horizontal HHL
$10,174.50
Volume Pricing
3 Weeks
Choose ItemQD4602HH Support Documentation
QD4602HHDFB QCL, 4.602 μm CWL, 3 cm⁻¹ Tuning, 150 mW, Horizontal HHL
$10,174.50
Volume Pricing
3-5 Days
Back to Top

5.00 - 6.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning Range (Typ.) Power (Typ.)b Max Operating
Currentb
Package Wavelength Tested Laser Mode Targeted Gasc
QD5500CM1 info Varies from 5.00 to 6.00 µm
(2000 to 1667 cm-1)
2.5 cm-1 40 mW 700 mA Two-Tab C-Mount Yes Single Frequencyd N/A
QD5500HHLH info Varies from 5.00 to 6.00 µm
(2000 to 1667 cm-1)
3 cm-1 150 mW 500 mA High Heat Load with
Horizontal Emissione
QD5250C2 info Varies from 5.20 to 5.30 µm
(1923 to 1887 cm-1)
2.5 cm-1 60 mW 700 mA Two-Tab C-Mount NO (Nitric Oxide)f
QD5263HH info 5.263 µm (1900 cm-1) 3 cm-1 130 mW 1000 mA High Heat Load with
Horizontal Emissione
  • Distributed Feedback Lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number. The absolute maximum power can be found by clicking on the blue info icon above (). Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • Additional information on the high heat load package with horizontal emission is available at its full web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • A comparison between the center wavelength ranges and the spectral lines of nitric oxide can be found by clicking the blue info icons above () and selecting the Nitric Oxide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD5500CM1 Support Documentation
QD5500CM1DFB QCL, 5.00 - 6.00 μm CWL, 2.5 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD5500HHLH Support Documentation
QD5500HHLHDFB QCL, 5.00 - 6.00 μm CWL, 3 cm⁻¹ Tuning, 150 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD5250C2 Support Documentation
QD5250C2DFB QCL, 5.20 - 5.30 μm CWL, 2.5 cm⁻¹ Tuning, 60 mW, Two-Tab C-Mount
$6,426.00
Today
Choose ItemQD5263HH Support Documentation
QD5263HHDFB QCL, 5.263 μm CWL, 3 cm⁻¹ Tuning, 130 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

6.00 - 7.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning Range (Typ.) Power (Typ.)b Max Operating
Currentb
Package Wavelength Tested Laser Mode Targeted Gasc
QD6500CM1 info Varies from 6.00 to 7.00 µm
(1667 to 1429 cm-1)
2 cm-1 40 mW 650 mA Two-Tab C-Mount Yes Single Frequencyd N/A
QD6500HHLH info 3 cm-1 80 mW 600 mA High Heat Load with
Horizontal Emissione
QD6134HH info 6.134 µm (1630 cm-1) 50 mW 1000 mA NO2 (Nitrogen Dioxide)f
  • Distributed Feedback Lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number. The absolute maximum power can be found by clicking on the blue info icon above (). Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • Additional information on the high heat load package with horizontal emission is available at its full web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler. 
  • A comparison between the center wavelength range and the spectral lines of nitrogen dioxide can be found by clicking the blue info icon above () and selecting the Nitrogen Dioxide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD6500CM1 Support Documentation
QD6500CM1DFB QCL, 6.00 - 7.00 μm CWL, 2 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD6500HHLH Support Documentation
QD6500HHLHDFB QCL, 6.00 - 7.00 μm CWL, 3 cm⁻¹ Tuning, 150 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD6134HH Support Documentation
QD6134HHDFB QCL, 6.134 μm CWL, 3 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

7.00 - 8.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning Range (Typ.) Power (Typ.)b Max Operating
Currentb
Package Wavelength Tested Laser Mode Targeted Gasc
QD7500CM1d info Varies from 7.00 to 8.00 µm
(1429 to 1250 cm-1)
1.5 cm-1 40 mW 600 mA Two-Tab C-Mount Yes Single Frequencyd N/A
QD7500DM1d info 1.5 cm-1 100 mW 600 mA D-Mountf N/A
QD7500HHLH info 3 cm-1 50 mW 700 mA High Heat Load with
Horizontal Emissiong
N/A
QD7416HH info 7.416 µm (1348 cm-1) 3 cm-1 100 mW 1000 mA SO2 (Sulfur Dioxide)h
QD7716HH info 7.716 µm (1296 cm-1) 3 cm-1 30 mW 1000 mA N2O (Nitrous Oxide)i
QD7901HH info 7.901 µm (1266 cm-1) 3 cm-1 50 mW 700 mA H2S (Hydrogen Sulfide)j
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number. The absolute maximum power can be found by clicking on the blue info icon above (). Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • If broadband emission is preferred, please consider the 7.70 µm Fabry-Perot Lasers sold below.
  • Additional information on the D-mount package is available at its full web presentation.
  • Additional information on the high heat load package with horizontal emission is available at its full web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • A comparison between the center wavelength range and the spectral lines of sulfur dioxide can be found by clicking the blue info icon above () and selecting the Sulfur Dioxide tab.
  • A comparison between the center wavelength range and the spectral lines of nitrous oxide can be found by clicking the blue info icon above () and selecting the Nitrous Oxide tab.
  • A comparison between the center wavelength range and the spectral lines of hydrogen sulfide can be found by clicking the blue info icon above () and selecting the Hydrogen Sulfide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD7500CM1 Support Documentation
QD7500CM1DFB QCL, 7.00 - 8.00 μm CWL, 1.5 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD7500DM1 Support Documentation
QD7500DM1DFB QCL, 7.00 - 8.00 μm CWL, 1.5 cm⁻¹ Tuning, 100 mW, D-Mount
$6,426.00
Today
Choose ItemQD7500HHLH Support Documentation
QD7500HHLHDFB QCL, 7.00 - 8.00 μm CWL, 3 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD7416HH Support Documentation
QD7416HHDFB QCL, 7.416 μm CWL, 3 cm⁻¹ Tuning, 100 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD7716HH Support Documentation
QD7716HHDFB QCL, 7.716 μm CWL, 3 cm⁻¹ Tuning, 30 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD7901HH Support Documentation
QD7901HHDFB QCL, 7.901 μm CWL, 3 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

7.9 µm Center Wavelength Fabry-Perot QCL

Item # Info Center Wavelengtha Power (Min) Typical/Max Operating Current Package Wavelength Tested Laser Mode Targeted Gasb
QF7900HB info 7.9 µm (1266 cm-1) 500 mW 900 mA / 1600 mA High Heat Load with
Horizontal Emissionc
Yes Single Spatial Mode N/A
  • These quantum cascade lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that Thorlabs does not offer cables that connect high heat load lasers to our controllers, and that third-party cables for these packages are typically not rated for the 8 A maximum current of the internal thermoelectric cooler. Custom cables will be required.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF7900HB Support Documentation
QF7900HBFabry-Perot Quantum Cascade Laser, 7.9 μm CWL, 400 nm Min BW, 500 mW, Horizontal HHL
$9,103.50
Today
Back to Top

8.00 - 9.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning
Range (Typ.)
Power (Typ.)b Max Operating
Currentb
Package Wavelength
Tested
Laser Mode Targeted Gasesc
QD8050CM1 info Varies from 8.00 to 8.10 µm
(1250 to 1235 cm-1)
2.5 cm-1 100 mW 1000 mA Two-Tab C-Mount Yes Single Frequencyd CH4 (Methane)
HONO (Nitrous Acid)
QD8500CM1 info Varies from 8.00 to 9.00 µm
(1250 to 1111 cm-1)
2.5 cm-1 100 mW 900 mA Two-Tab C-Mount N/A
QD8500HHLH info 2.5 cm-1 100 mW 600 mA High Heat Load with
Horizontal Emissione
N/A
QD8912HH info 8.912 µm (1122.1 cm-1) 3 cm-1 150 mW 1000 mA High Heat Load with
Horizontal Emissione
NH3 (Ammonia)f
  • Distributed Feedback Lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number. The absolute maximum power can be found by clicking on the blue info icon above (). Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • Additional information on the high heat load package with horizontal emission is available at its full web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • A comparison between the center wavelength range and the spectral lines of ammonia can be found by clicking the blue info icon above () and selecting the Ammonia tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD8050CM1 Support Documentation
QD8050CM1Customer Inspired! DFB QCL, 8.00 - 8.10 μm CWL, 2.5 cm⁻¹ Tuning, 100 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD8500CM1 Support Documentation
QD8500CM1DFB QCL, 8.00 - 9.00 μm CWL, 2.5 cm⁻¹ Tuning, 100 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD8500HHLH Support Documentation
QD8500HHLHDFB QCL, 8.00 - 9.00 μm CWL, 2.5 cm⁻¹ Tuning, 100 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD8912HH Support Documentation
QD8912HHDFB QCL, 8.912 μm CWL, 3 cm⁻¹ Tuning, 150 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

8.45 - 8.5 µm Center Wavelength Fabry-Perot QCL

Item # Info Center Wavelengtha Power (Min) Typical/Max Operating Current Package Wavelength Tested Laser Mode Targeted Gasb
QF8450C2 info 8.45 µm (1183 cm-1) 300 mW 750 mA / 1000 mA Two-Tab C-Mount Yes Single Transverse Mode N/A
QF8500HB info 8.5 µm (1176 cm-1) 400 mW 1500 mA / 2000 mA High Heat Load with
Horizontal Emissionc
Yes Single Transverse Mode N/A
  • These quantum cascade lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that Thorlabs does not offer cables that connect high heat load lasers to our controllers, and that third-party cables for these packages are typically not rated for the 8 A maximum current of the internal thermoelectric cooler. Custom cables will be required.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF8450C2 Support Documentation
QF8450C2Fabry-Perot Quantum Cascade Laser, 8.45 μm CWL, 300 mW, Two-Tab C-Mount
$4,964.09
Today
Choose ItemQF8500HB Support Documentation
QF8500HBFabry-Perot Quantum Cascade Laser, 8.5 μm CWL, 400 nm Min BW, 400 mW, Horizontal HHL
$9,103.50
Lead Time
Back to Top

9.00 - 10.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning
Range (Typ.)
Power (Typ.)b Max Operating
Currentb
Package Wavelength Tested Laser Mode Targeted Gasc
QD9500CM1 info Varies from 9.00 to 10.00 µm
(1111 to 1000 cm-1)
2.5 cm-1 60 mW 800 mA Two-Tab C-Mount Yes Single Frequencyd N/A
QD9500HHLH info 2.5 cm-1 100 mW 600 mA High Heat Load with Horizontal Emissione N/A
QD9062HH info 9.062 µm
(1103.5 cm-1)
3 cm-1 130 mW 1000 mA High Heat Load with
Horizontal Emissione
NH3 (Ammonia)f
QD9550C2 info Varies from 9.50 to 9.60 µm
(1042 to 1053 cm-1)
2.5 cm-1 60 mW 800 mA Two-Tab C-Mount NH3 (Ammonia)f
QD9697HH info 9.697 µm (1031 cm-1) 3 cm-1 80 mW 1000 mA High Heat Load with
Horizontal Emissione
O3 (Ozone)g
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number. The absolute maximum power can be found by clicking on the blue info icon above (). Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • Additional information on the high heat load package with horizontal emission is available at its full web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • A comparison between the center wavelength range and the spectral lines of ammonia can be found by clicking the blue info icon above () and selecting the Ammonia tab.
  • A comparison between the center wavelength range and the spectral lines of ozone can be found by clicking the blue info icon above () and selecting the Ozone tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD9500CM1 Support Documentation
QD9500CM1DFB QCL, 9.00 - 10.00 μm CWL, 2.5 cm⁻¹ Tuning, 60 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD9500HHLH Support Documentation
QD9500HHLHDFB QCL, 9.00 - 10.00 μm CWL, 2.5 cm⁻¹ Tuning, 100 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD9062HH Support Documentation
QD9062HHDFB QCL, 9.062 μm CWL, 3 cm⁻¹ Tuning, 130 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD9550C2 Support Documentation
QD9550C2DFB QCL, 9.50 - 9.60 μm CWL, 2.5 cm⁻¹ Tuning, 60 mW, Two-Tab C-Mount
$6,426.00
Today
Choose ItemQD9697HH Support Documentation
QD9697HHDFB QCL, 9.697 μm CWL, 3 cm⁻¹ Tuning, 80 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

9.15 - 9.55 µm Center Wavelength Fabry-Perot QCLs

Item # Info Center Wavelengtha Power (Min)b Typical/Max Operating Currentb Package Wavelength Tested Laser Mode Targeted Gasc
QF9150C2 info 9.15 µm (1093 cm-1) 200 mW 850 mA / 1100 mA Two-Tab C-Mount Yes Single
Transverse
Mode
N/A
QF9200HB info 9.2 µm (1087 cm-1) 200 mW 1300 mA / 2000 mA High Heat Load with
Horizontal Emissiond
QF9500T1 info 9.5 µm (1053 cm-1) 300 mW 550 mA / 800 mA Ø9 mme
QF9550CM1f info 9.55 µm (1047 cm-1) 80 mW 1500 mA / 1700 mA Two-Tab C-Mount
  • Fabry-Perot Lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • Please see the the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that Thorlabs does not offer cables that connect high heat load lasers to our controllers, and that third-party cables for these packages are typically not rated for the 8 A maximum current of the internal thermoelectric cooler. Custom cables will be required.
  • The Ø9 mm package for this laser is 4.3 mm (0.17") thick, which is more than the standard 1.5 mm (0.06"). The laser will still be compatible with all Ø9 mm laser mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications.
  • If emission at a single wavelength is preferred, please consider the 9.00 - 10.00 µm Distributed Feedback Lasers sold above.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF9150C2 Support Documentation
QF9150C2Fabry-Perot Quantum Cascade Laser, 9.15 μm CWL, 200 mW, Two-Tab C-Mount
$4,964.09
Today
Choose ItemQF9200HB Support Documentation
QF9200HBFabry-Perot Quantum Cascade Laser, 9.2 μm CWL, 800 nm Min BW, 200 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQF9500T1 Support Documentation
QF9500T1Fabry-Perot Quantum Cascade Laser, 9.5 μm CWL, 300 mW, Ø9 mm, H Pin Code
$3,860.96
Volume Pricing
Lead Time
This item is out of stock and currently has a  lead time
Choose ItemQF9550CM1 Support Documentation
QF9550CM1Fabry-Perot Quantum Cascade Laser, 9.55 μm CWL, 80 mW, Two-Tab C-Mount
$5,688.11
Today
Back to Top

10.00 - 11.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning
Range (Typ.)
Power (Typ.)b Max Operating
Currentb
Package Wavelength Tested Laser Mode Targeted Gasc
QD10500CM1 info Varies from 10.00 to 11.00 µm
(1000 to 909 cm-1)
2 cm-1 40 mW 600 mA Two-Tab C-Mount Yes Single Frequencyd N/A
QD10500HHLH info 2.5 cm-1 50 mW 700 mA High Heat Load with
Horizontal Emissione
QD10530HH info 10.530 µm (949.7 cm-1) 3 cm-1 50 mW 1000 mA C2H4 (Ethylene)f
QD10549HH info 10.549 µm (948 cm-1) 3 cm-1 60 mW 1000 mA SF6
(Sulfur Hexafluoride)g
QD10622HH info 10.622 µm (941 cm-1) 3 cm-1 60 mW 1000 mA N2H4 (Hydrazine)h
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number. The absolute maximum power can be found by clicking on the blue info icon above (). Do not exceed these values, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • Additional information on the high heat load package with horizontal emission is available at its full web presentation. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.
  • A comparison between the center wavelength range and the spectral lines of ethylene can be found by clicking the blue info icon above () and selecting the Ethylene tab.
  • A comparison between the center wavelength range and the spectral lines of sulfur hexafluoride can be found by clicking the blue info icon above () and selecting the Sulfur Hexafluoride tab.
  • A comparison between the center wavelength range and the spectral lines of hydrazine can be found by clicking the blue info icon above () and selecting the Hydrazine tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD10500CM1 Support Documentation
QD10500CM1DFB QCL, 10.00 - 11.00 μm CWL, 2 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD10500HHLH Support Documentation
QD10500HHLHDFB QCL, 10.00 - 11.00 μm CWL, 2.5 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD10530HH Support Documentation
QD10530HHDFB QCL, 10.530 μm CWL, 3 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD10549HH Support Documentation
QD10549HHDFB QCL, 10.549 μm CWL, 3 cm⁻¹ Tuning, 60 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD10622HH Support Documentation
QD10622HHDFB QCL, 10.622 μm CWL, 3 cm⁻¹ Tuning, 60 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Last Edited: Oct 28, 2014 Author: Dan Daranciang