"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='09A1C72668A01DEFF36D96235DDC089B';/* ]]> */
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Implantable Fiber Optic Cannulae, Ø400 µm Core, 0.39 NA Fiber![]()
CFMLC14U-20 50 mm Uncleaved Fiber, Pack of 20 CFMC14L10 10 mm Cleaved Fiber CFM14L05 5 mm Cleaved Fiber CFMLC14L02 2 mm Cleaved Fiber Stainless Steel Ø1.25 mm Ø2.5 mm Polished Ceramic Ferrule Ends Both Stainless Steel and Ceramic Ferrules are Available in Ø1.25 mm and Ø2.5 mm Sizes CFML14L20 20 mm Cleaved Fiber Related Items ![]() Please Wait
![]() Click for Details All Fiber Optic Cannulae and Optogenetics Patch Cables can be easily mated using an Interconnect or Mating Sleeve. Features
Thorlabs' Implantable Fiber Optic Cannulae are designed to deliver light from an LED or laser light source to optically sensitive cells within a specimen. Each cannula consists of a ferrule and a length of protruding optical fiber that is typically surgically implanted using stereotaxic guidance. After implantation, the ferrule remains exposed; this provides an interface with our line of Optogenetics Equipment (see the OG Selection Guide tab for a full listing). The cannulae sold on this page use Ø400 µm core, 0.39 NA fiber (Item # FT400EMT) with a variety of ferrule and length options. Cannulae with Ø1.25 mm (LC) ferrules are less invasive and lightweight, making them ideal for smaller specimens or placing multiple cannulae in close proximity. Ø2.5 mm (FC) ferrules are larger and easier to handle; this provides a more robust connection that is ideal for working with larger specimens. Stainless steel ferrules are easy to score for better adherence when implanted and fixed with glue, while ceramic ferrules are lighter for reduced stress on the specimen. Cannulae are available with ready-to-use flat cleaved fiber of a pre-determined length (2, 5, 10, or 20 mm). Uncleaved cannulae with 50 mm scissor-cut fiber can be cleaved by the user to a desired length using the procedure outlined on the Cannula Cleaving tab. Implant guides for the cannulae sold on this page are also available below in packs of one or five. Each cannula includes a protective cap that shields the ferrule end from dust and other hazards. Additional fiber caps are also sold separately. If the ferrule end becomes dirty from use, we offer a selection of inspection tools, as well as fiber optic cleaning products. Patch Cable Compatibility and Numerical Aperture (NA) ![]() Click to Enlarge Multiple fiber NAs are available across our optogenetics product line; cannulae with a 0.39 NA are sold on this page. Mating Sleeve Compatibility Custom Cannulae Optogenetics Product Family for In Vivo ApplicationsThorlabs offers a wide variety of products designed to support in vivo optogenetics applications. Please visit the OG Selection Guide tab above to see a full listing of available products for different applications.
![]() Custom Fiber Optic CannulaThorlabs offers custom cannulae with the following options. Place a quote request through the following form to receive a quote for your custom cannula order.
Fiber CleavingA cleave, or precision cut, is used to ensure proper light propagation out of the fiber tip. Thorlabs' uncleaved cannula must be cleaved before use; a cleaved cannula can be cleaved again if a shorter fiber length is desired. We recommend the following procedure for cleaving the fiber end. Required Materials
Cleaving Procedure
A good cleave will be flat across the fiber and perpendicular to the optic axis. There should be no ‘tag’ (i.e., protrusion) from the edge of the fiber. The region where the initial scribe was made may be visible. It should be less than 5% of the core diameter. Be patient as this process takes a little practice. Please be aware that it will be more difficult to achieve a high-quality cleave in large-core-diameter fibers compared to thinner fibers. A view of a properly cleaved fiber end as seen through a Thorlabs' JEL10 eye loupe is shown in Figure 4. Click Here for a PowerPoint Illustrating This Procedure Thorlabs also offers a full fiber connectorization manual, which covers fiber termination and connectorization, as well as bare fiber cleaving. It can be downloaded for free here, or a paper copy can be purchased here.
Optogenetics Selection GuideThorlabs offers a wide range of optogenetics components; the compatibility of these products in select standard configurations is discussed in detail here. Please contact Technical Support for assistance with items outside the scope of this guide, including custom fiber components for optogenetics.
Single-Site StimulationOne Light Source to One Cannula ImplantThe most straightforward method for in vivo light stimulation of a specimen is to use a single fiber optic with a single LED light source. The single wavelength LED is powered by an LED driver, and then the illumination output is fiber-coupled into a patch cable, which connects to the implanted cannula. See the graphics and expandable compatibility tables below for the necessary patch cables and cannulae to create this setup. To choose the appropriate LED and driver, see below or the full web presentation. Click on Each Component for More Information ![]() Click to See Ø1.25 mm (LC) Ferrule Compatible Patch Cables, Cannulae, and InterconnectsClick to See Ø2.5 mm (FC) Ferrule Compatible Patch Cables, Cannulae, and Interconnects
Bilateral StimulationThe ability to accurately and simultaneously direct light to multiple locations within a specimen is desired for many types of optogenetics experiments. For example, bilateral stimulation techniques typically target neurons in two spatially separated regions in order to induce a desired behavior. In more complex experiments involving the simultaneous inhibition and stimulation of neurons, delivering light of two different monochromatic wavelengths within close proximity enables the user to perform these experiments without implanting multiple cannulae, which can increase stress on the specimen. Bilateral stimulation can be achieved with several different configurations depending on the application requirements. The sections below illustrate examples of different configurations using Thorlabs' optogenetics products. Option 1: One Light Source to Two Cannula Implants Using Rotary Joint SplitterThorlabs' RJ2 1x2 Rotary Joint Splitter is designed for optogenetics applications and is used to split light from a single input evenly between two outputs. The rotary joint interface allows connected patch cables to freely rotate, reducing the risk of fiber damage caused by a moving specimen. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation. ![]() Click to See Ø1.25 mm (LC) Ferrule Components Recommended for Use with RJ2 Rotary Joint SplitterClick to See Ø2.5 mm (FC) Ferrule Components Recommended for Use with RJ2 Rotary Joint SplitterOption 2: One or Two Light Sources to Two Cannula ImplantsIf the intent is for one LED source to connect to two cannulae for simultaneous light modulation, then a bifurcated fiber bundle can be used to split the light from the LED into each respective cannula. For dual wavelength stimulation (mixing two wavelengths in a single cannula) or a more controlled split ratio between cannula, one can use a multimode coupler to connect one or two LEDs to the cannulae. If one cable end is left unused, the spare coupler cable end may be terminated by a light trap. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation. Click on Each Component Below for More Information ![]() ![]()
Two Light Sources into One Dual-Core Cannula ImplantFor bilateral stimulation applications where the two cannulas need to be placed in close proximity (within ~1 mm), Thorlabs offers dual-core patch cables and cannulae that are designed for this specific application. Each core is driven by a separate light source, enabling users to stimulate and/or supress nerve cells in the same region of the specimen. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation. ![]() Click on Each Component for More Information
Illumination![]() Click to Enlarge M470F3 Fiber-Coupled LEDs and DriversOur fiber-coupled LEDs are ideal light sources for optogenetics applications. They feature a variety of wavelength choices and a convenient interconnection to optogenetics patch cables. Thorlabs offers fiber-coupled LEDs with nominal wavelengths ranging from 280 nm to 1050 nm. See the table to the right for the LEDs with the most popular wavelengths for optogenetics. A table of compatible LED drivers can be viewed by clicking below.
![]()
![]()
![]()
![]()
![]() ![]() Click for Details Cross Section Drawing of OGL with CFML22L05 Cannula (Not Included) ![]() Click for Details Implant Guide Assembly ![]() Click for Details Mounting Surface of OGF Cannula Impant Guide
These Cannula Implant Guides are designed to provide guidance and stability for a fiber optic cannula during an implantation procedure. The bottom surface of each implant guide features a roughened surface and circular groove (see image to the right) that increases the surface area available to dental cement and improves adhesion to the specimen. A 1.6 mm long protrusion on the implant guide helps stabilize the guide when implanted. Each implant is constructed using lightweight surgical titanium (≤0.11 g) which can be sterilized prior to use. For convenience, the cannula guides are offered below in packs of one or five. For best results when implanting a cannula, the OGL and OGF should be used with a cannula holder and stereotaxic guidance equipment. To affix the cannula within the implant guide, first insert the cannula into the receptacle of the implant guide (see drawing to the right). Then, add a small amount of cement or epoxy to the cannula via the two Ø0.8 mm weep holes. Finally, attach the cannula ferrule to an XCL (Ø1.25 mm ferrule) or XCF (Ø2.5 mm ferrule) cannula holder. The OGL implant guide is compatible with our standard Ø1.25 mm cannulae (ceramic and stainless steel) and the OGF implant guide is compatible with our standard Ø2.5 mm cannulae (ceramic and stainless steel). When assembled, the length of the protruding fiber is reduced by 2 mm; therefore, these implant guides cannot be used with our 2 mm long cannulae. Additionally, due to the fiber separation distance, the implant guides cannot be used with our dual-core cannulae. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|