Scientific Camera Selection Guide
- Zelux® CMOS, Kiralux® CMOS, and Quantalux® sCMOS Scientific Cameras
- Models for Low Light, High Speed, UV, Visible, Near-IR, or Polarization
- Versatile ThorCam™ Software with SDK and Programming Interfaces
- Support for C, C++, C#, .NET, Python, LabVIEW, MATLAB, and µManager
Passively Cooled, Compact
Monochrome sCMOS Camera
Passively Cooled
CMOS Sensor Cameras
with Low Read Noise
Passively Cooled
Polarization-Sensitive
CMOS Sensor Camera
Hermetically Sealed, TE-Cooled
Monochrome sCMOS Camera
Ultra-Compact
CMOS Cameras
with Low Read Noise
Passively Cooled
CMOS Sensor Cameras
with Low-Profile Package
Hermetically Sealed, TE-Cooled
Monochrome CMOS Camera
Please Wait
Camera Selection Tool
Reset Parametersof 31 Products Shown
Select Parameters
Select Applications
of 31 Products Shown
Item Number | Sensor Type | Optical Format | Electronic Shutter | Pixel Size | Max Frame Rate | Read Noise | Digital Output | Cooling | Housing Dimensions |
---|
Thorlabs offers three families of scientific cameras: Zelux®, Kiralux®, and Quantalux®. Zelux cameras are designed for general-purpose imaging and provide high imaging performance while maintaining a small footprint. Kiralux cameras have CMOS sensors in monochrome, color, NIR-enhanced, or polarization-sensitive versions and are available in low-profile, passively cooled housings; compact, passively cooled housings; or hermetically sealed, TE-cooled housings. The polarization-sensitive Kiralux camera incorporates an integrated micropolarizer array that, when used with our ThorCam™ software package, captures images that illustrate degree of linear polarization, azimuth, and intensity at the pixel level. Our Quantalux monochrome sCMOS cameras feature high dynamic range combined with extremely low read noise for low-light applications. They are available in either a compact, passively cooled housing or a hermetically sealed, TE-cooled housing. The tables below provide a summary of our camera offerings.
Compact Scientific Cameras | |||||||
---|---|---|---|---|---|---|---|
Camera Type | Zelux® CMOS | Kiralux® CMOS | Quantalux® sCMOS | ||||
1.6 MP | 1.3 MP | 2.3 MP | 5 MP | 8.9 MP | 12.3 MP | 2.1 MP | |
Item # | Monochrome: CS165MUa Color: CS165CUa |
Mono.: CS135MU Color: CS135CU NIR-Enhanced Mono.: CS135MUN |
Mono.: CS235MU Color: CS235CU |
Mono., Passive Cooling: CS505MU1 CS505MU Mono., Active Cooling: CC505MU Color: CS505CU1 CS505CU Polarization: CS505MUP1 |
Mono., Passive Cooling: CS895MU Mono., Active Cooling: CC895MU Color: CS895CU |
Mono., Passive Cooling: CS126MU LP126MU(/M) Mono., Active Cooling: CC126MU Color, Passive Cooling: CS126CU LP126CU(/M) |
Monochrome, Passive Cooling: CS2100M-USB Active Cooling: CC215MU |
Product Photos (Click to Enlarge) |
|||||||
Electronic Shutter | Global Shutter | Global Shutter | Rolling Shutterb | ||||
Sensor Type | CMOS | CMOS | sCMOS | ||||
Number of Pixels |
1440 x 1080 (H x V) | 1280 x 1024 (H x V) | 1920 x 1200 (H x V) | 2448 x 2048 (H x V) | 4096 x 2160 (H x V) |
4096 x 3000 (H x V) |
1920 x 1080 (H x V) |
Pixel Size | 3.45 µm x 3.45 µm | 4.8 µm x 4.8 µm | 5.86 µm x 5.86 µm | 3.45 µm x 3.45 µm | 5.04 µm x 5.04 µm | ||
Optical Format |
1/2.9" (6.2 mm Diag.) |
1/2" (7.76 mm Diag.) |
1/1.2" (13.4 mm Diag.) |
2/3" (11 mm Diag.) |
1" (16 mm Diag.) |
1.1" (17.5 mm Diag.) |
2/3" (11 mm Diag.) |
Peak Quantum Efficiency (Click for Plot) |
Monochrome: 69% at 575 nm Color: Click for Plot |
Monochrome: 59% at 550 nm Color: Click for Plot NIR: 60% at 600 nm |
Monochrome: 78% at 500 nm Color: Click for Plot |
Monochrome & Polarization: 72% (525 to 580 nm) Color: Click for Plot |
Monochrome: 72% (525 to 580 nm) Color: Click for Plot |
Monochrome: 72% (525 to 580 nm) Color: Click for Plot |
Monochrome: 61% (at 600 nm) |
Max Frame Rate (Full Sensor) |
34.8 fps | 165.5 fps | 39.7 fps | 35 fps (CS505xx1, CC505MU, CS505MUP1), 53.2 fps (CS505xx) |
20.8 fps (CC895MU), 30.15 fps (CS895xx) |
15.1 fps (CC126MU), 21.7 fps (CS126xx and LP126xx(/M)) |
50 fps |
Read Noise | <4.0 e- RMS | <7.0 e- RMS | <7.0 e- RMS | <2.5 e- RMS | <1 e- Median RMS; <1.5 e- RMS | ||
Digital Output |
10 Bit (Max) | 10 Bit (Max) | 12 Bit (Max) | 16 Bit (Max) | |||
PC Interface | USB 3.0 | ||||||
Available Fanless Cooling |
N/A | N/A | N/A | 15 °C to 20 °C Below Ambient Temperature (CCxxxMU Cameras Only) | |||
Housing Size (Click for Details) |
0.59" x 1.72" x 1.86" (15.0 x 43.7 x 47.2 mm3) |
Passively Cooled CMOS Camera TE-Cooled CMOS Camera Passively Cooled Low-Profile CMOS Camera |
Passively Cooled sCMOS Camera TE-Cooled sCMOS Camera |
||||
Typical Applications |
Mono. & Color: Brightfield Microscopy, General Purpose Imaging, Machine Vision, Material Sciences, Materials Inspection, Monitoring, Transmitted Light Spectroscopy, UAV, Drone, & Handheld Imaging Mono. Only: Multispectral Imaging, Semiconductor Inspection Color Only: Histopathology |
Mono., Color, & NIR: Brightfield Microscopy, Ca++ Ion Imaging, Electrophysiology/Brain Slice Imaging, Flow Cytometry, Fluorescence Microscopy, General Purpose Imaging, Immunohistochemistry (IHC), Laser Speckle Imaging, Machine Vision, Material Sciences, Materials Inspection, Vascular Imaging, Monitoring, Particle Tracking, Transmitted Light Spectroscopy, Vascular Imaging, VIS/NIR Imaging Mono. Only: Multispectral Imaging Semiconductor Inspection Color Only: Histopathology NIR Only: Ophthalmology/Retinal Imaging |
Mono. & Color: Autofluorescence, Brightfield Microscopy, Electrophysiology/Brain Slice Imaging, Fluorescence Microscopy, Immunohistochemistry (IHC), Machine Vision, Material Sciences, Materials Inspection, Monitoring, Quantitative Phase-Contrast Microscopy, Transmitted Light Microscopy Mono. Only: Multispectral Imaging Semiconductor Inspection Color Only: Histopathology |
Mono. & Color: Autofluorescence, Brightfield Microscopy, Electrophysiology/Brain Slice Imaging, Fluorescence Microscopy, Immunohistochemistry (IHC), Machine Vision, Material Sciences, Materials Inspection, Monitoring, Quantitative Phase-Contrast Microscopy, Transmitted Light Microscopy Mono. Only: Multispectral Imaging, Semiconductor Inspection Color Only: Histopathology Polarization Only: Inspection, Surface Reflection Reduction, Transparent Material Detection |
Mono. & Color: Autofluorescence, Brightfield Microscopy, Electrophysiology/Brain Slice Imaging, Fluorescence Microscopy, Immunohistochemistry (IHC), Machine Vision, Material Science, Materials Inspection, Monitoring, Quantitative Phase-Contrast Microscopy, Transmitted Light Microscopy Mono. Only: Multispectral Imaging, Ophthalmology/Retinal Imaging, Semiconductor Inspection Color Only: Histopathology LP126xx(/M), CS126xx, and CC126MU Only: Whole-Slide Microscopy |
Passive & Active Cooling: Autofluorescence, Brightfield Microscopy, Fluorescence Microscopy, Immunohistochemistry (IHC), Material Sciences, Materials Inspection, Monitoring, Quantitative Phase-Contrast Microscopy, Quantum Dots, Semiconductor Inspection, Transmitted Light Microscopy, Whole-Slide Microscopy Active Cooling Only: Electrophysiology/Brain Slice Imaging, Multispectral Imaging |
Posted Comments: | |
Alberto Anadón
 (posted 2024-09-11 10:26:37.347) Hi,
I am looking for a camera to look at magnetic domains at high speed. What would be your suggestions for this purpose?
Thanks
Alberto cdolbashian
 (posted 2024-09-17 04:11:20.0) Thank you for reaching out to us with this inquiry! We offer a wide variety of cameras with different parameters which should be considered when selecting a camera for a particular application. As you note, speed seems to be the most important factor for you. In this case, our highest FPS camera would be the CS135MU monochromatic camera, with a frame rate of 165fps for a full frame FOV. The FPS can be further increased by reducing the active area of the sensor, which is achievable via the ThorCam software or via the SDK. michael Rushford
 (posted 2024-08-09 14:25:56.77) Do you offer SDK with python supported for the scientific and oother camera. Can you please send link to this software tutorial.
Thanks
Mike
Please also reply to rushford1@llnl.gov cdolbashian
 (posted 2024-08-14 11:32:02.0) Thank you for reaching out to us with this inquiry. I have contacted you directly to assist in locating the documentation, files, and some example code which you are seeking. Noah Rubin
 (posted 2021-04-07 11:47:05.87) Hi there,
I am considering purchasing one of your scientific CMOS or CCD sensors. Nowhere in your product comparison or specs do I see anything about linearity of the cameras. I think this is part of the EMVA standard. Do you spec the linearity of your cameras? It is very important for my application.
Noah Rubin YLohia
 (posted 2021-04-08 10:38:24.0) Hello Noah, thank you for contacting Thorlabs. We indeed do not state linearity because it is a direct result of the image sensor manufacturer's design and process and therefore beyond our control and not explicitly specified by the manufacturer of the majority of sensors we use. With some exceptions we avoid specifying performance that the manufacturer doesn't and that we cannot control with our design. That being said, we have reached out to you with some characterization data of a single CS505MU unit. |