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Expressions for the direction of the reflected 

ray and points on the reflected beam path.
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Tracing the Reflected Beam Path  

◆ Each mirror in a setup has its own, 

independently adjustable, angular orientation. 

◆ The beam path depends on each mirror's 

orientation.

◆ Defining a fixed (global) coordinate system for 

the setup is useful for tracing the beam path 

through the setup. 

◆ However, it is simplest to calculate the direction 

of the reflected beam when working in the local 

coordinate system of the reflective surface.

Figure 1. The beam path reflected

by these two mirrors depends on

their orientations with respect to one

another.

◆ Therefore, both local and global coordinate systems are often used, and it is 

necessary to convert between them.
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Surface Reflection in Terms of Local Coordinates 

◆ The angles of incidence and reflection 

with the surface normal are the same.

◆ The optical angle (𝜃) between the 

incident and reflected rays is twice the 

angle between the incident ray and 

surface normal.

◆ Changing the angle of incidence by an 

angle 𝛿 changes the optical angle (𝜃) 

between the incident and reflected rays 

by an angle 2𝛿.

The incident ray reflects across the surface normal.

𝜃 = 2𝛼𝑖

Figure 2. Incident and reflected ray angles 

with the surface normal are equal.𝜃 = 2 𝛼𝑖 + 𝛿 = 2𝛼𝑖 + 2𝛿

𝒏′: Surface Normal 

𝒊′: Incident Ray 𝒓′: Reflected Ray
𝑎𝑖 𝑎𝑟

Reflective Surface 

𝜃

𝒊′: Incident Ray 𝒓′: Reflected Ray

𝑎𝑖 𝑎𝑟

Reflective Surface

𝛿 𝛿

𝜃

𝒏′: Surface Normal 

𝛼𝑖 =𝛼𝑟
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Surface Reflection in Terms of Local Coordinates

◆ In the local coordinate system, the 

surface is in the plane of the u'- and v'-

axes, while the w'-axis is normal to the 

surface and u'-v' plane.

◆ The incident and reflected rays have unit 

vectors,   and , respectively, in which:

◆ The reflected ray (𝒓′) in local coordinates, 

is calculated by reflecting the incident ray 

(𝒊′) across the surface normal (𝒏′):

Calculating the reflected ray's coordinates.

𝑖′ 𝑟′

𝑖′∥ = 𝑟′∥

𝑖′⊥ = -𝑟′⊥

Components Parallel to u'-v' Plane

Components Perpendicular to u'-v' Plane

Figure 3. The angle between the incident

ray and surface normal equals the angle

between the reflected ray and surface

normal.

𝒏′: normal

w' axis <0, 0, 1>

𝒊′: Incident 

Ray

𝑖′⊥ 𝑟′⊥

𝑟′∥𝑖′∥

𝒓′: Reflected 

Ray

𝑎𝑖 𝑎𝑟

Reflective Surface is in 

the u' - v' Plane

𝒓′ = 𝒊′ − 2 𝒊′ ∙ 𝒏′ 𝒏′
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The Different Local and Global Perspectives

◆ Local perspective: the surface never 

moves. Instead, the angle of the 

incident ray changes. 

◆ Global perspective: the surface rotates 

relative to the incident ray.

◆ Example: choose a global coordinate 

system and define the orientation of 

the unrotated reflective surface. 

– Position of surface center: (0, 0, 0).

– The unrotated surface is in the x-y plane.

– The z-axis is normal to the unrotated  

surface.

Identifying differences in and relating local and global system perspectives.

Figure 4. Local Perspective of Surface

w' axis, Surface Normal

Incident Ray
Reflected Ray𝑎𝑖 𝑎𝑟

Surface is in the 

u' - v' plane. 

(0, 0, 0)

Figure 5. First step to a global view is defining

the orientation of the unrotated surface.

y-axis

x-axis

z-axis
Incident Ray

y-axis

x-axis
z-axis

normal

Unrotated  

Surface
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Define Some Global Coordinate System Conventions

◆ Global coordinates include information about the 

rotation angles of the surface relative to the global 

axes.

◆ Pitch and Yaw Rotation of the Reflective Surface 

– Positive pitch (𝜃) around x-axis is counterclockwise 

(CCW), when looking towards the origin, down the x-axis.

– Positive yaw (𝜓) around y-axis is CCW, when looking 

towards the origin, down the y-axis.

– The center of the reflective surface always coincides with 

the origin, regardless of its orientation.

Define global coordinate conventions for rotating the surface.

Figure 6. Rotation angles with respect to the x- and y-axis

(𝜃 and 𝜓 , respectively) are measured counterclockwise.

y-axis

x-axis

z-axis

𝜓

normal

y-axis

x-axis
z-axis

𝜃

normal

Rotated Reflective 

Surface
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Reflection Matrices: Coordinates and Unit Vectors

◆ Both points and vectors can be converted 

between local and global coordinate 

systems.

◆ Unit vectors directed from the origin, 

towards a point:

– Local unit vector: r' = <u', v', w'>

– Global unit vector: r = <x, y, z>

– For the unrotated surface, r' = r.

◆ Points on the surface:

– Local coordinates: P' = (u', v', w')

– Global coordinates: P = (x, y, z)

– For the unrotated surface, P' = P.

Points on the surface have local and global coordinates and unit vectors.

(a)

y-axis

x-axis
z-axis

normal

P' = P

y-axis

x-axis

𝜃

normal

z-axis

y-axis

x-axis

z-axis

𝜓

normal

y-axis

x-axis

z-axis

normal
P' = P

Figure 7. Rotation around the (a) x-axis and 

(b) y-axis. Unrotated surface is on the left, 

rotated surface is on the right.

(b)

r' r

r'
r

P' ≠ P

P' ≠ P
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Reflection Matrices: Unrotated to Rotated Orientations

◆ Converting a local point or unit vector to 

global coordinates requires including 

information about the rotation angles. This 

can be done using matrices.

◆ When rotation is CCW around the x-axis:

◆ When rotation is CCW around the y-axis:

Matrix algebra can be used to rotate vectors and points around an axis.

𝑥
𝑦
𝑧

=
1 0 0
0 cos𝜃 −sin𝜃
0 sin𝜃 cos𝜃

𝑢′
𝑣′
𝑤′

𝑷 = 𝑹𝑥 𝜃 𝑷′

𝑥
𝑦
𝑧

=
cos𝜓 0 sin𝜓
0 1 0

−sin𝜓 0 cos𝜓

𝑢′
𝑣′
𝑤′

𝑷 = 𝑹𝑦 𝜓 𝑷′

(a)

y-axis

x-axis
z-axis

normal

P' = (u', v', w')

y-axis

x-axis

𝜃

normal

z-axis

y-axis

x-axis

z-axis

𝜓

normal

y-axis

x-axis

z-axis

normal
P' = (u', v', w')

Figure 8. Counterclockwise (CCW) rotation 

around the (a) x-axis and (b) y-axis. 

Unrotated surface is on the left, rotated 

surface is on the right.

(b)

r' r

r' r
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Object Orientation Depends on Order of Rotations

Note that when rotating an object around a coordinate system's axes, the object's 

final orientation depends on the order in which the rotations were performed.

Case 2:

Pitch then Yaw

Case 1:

Yaw then Pitch
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Object Orientation Depends on Order of Rotations

◆ The final orientation of the reflective surface depends on the order in which the 

mirror's pitch and yaw axes were adjusted.

◆ Therefore, the order in which the pitch and yaw axes are adjusted determines:

– The orientation (direction) of the reflected beam.

– The beam path.

◆ To ensure agreement between experimental and modeled results, the order, 

direction, and magnitude of the rotations in the experimental and modeled 

cases must be in perfect agreement.

In other words, rotation matrices are not commutative.
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Reflection Matrices: Sequence of Rotations

◆ A sequence of rotations is typically used to orient a mirror. A total matrix (𝑹𝑇𝑜𝑡𝑎𝑙) 

converts between coordinate systems and accounts for all applied rotations.

◆ Compute the total matrix by multiplying the individual rotation matrices together. 

Multiply them in the order in which the sequence of rotations was performed. 

◆ For example, if the first rotation was around the x-axis (𝑹𝑥(𝜃)), and the second 

was around the y-axis (𝑹𝑦(𝜓)), the rotation matrix (𝑹𝑦𝑥(𝜃, 𝜓)) is the product:

A single, custom matrix converts between local and global coordinate systems.

𝑹𝑦𝑥 𝜃, 𝜓 =
cos𝜓 0 sin𝜓
0 1 0

−sin𝜓 0 cos𝜓

1 0 0
0 cos𝜃 −sin𝜃
0 sin𝜃 cos𝜃

=
cos𝜓 sin𝜃sin𝜓 cos𝜃sin𝜓
0 cos𝜃 −sin𝜃

−sin𝜓 sin𝜃cos𝜓 cos𝜃cos𝜓

𝑷 = 𝑹𝑻𝒐𝒕𝒂𝒍𝑷′ = 𝑹𝑦 𝜓 𝑹𝑥 𝜃 𝑷′ = 𝑹𝑦𝑥 𝜃, 𝜓 𝑷′

For information about matrix rotations and transformations, refer to a linear algebra reference, such as: D. Cherney, T. Denton,

R. Thomas, and A. Waldron(Davis, CA 2013). Linear Algebra.  https://www.math.ucdavis.edu/~linear/linear-guest.pdf
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Calculate the Reflected Ray's Global Coordinates

◆ Transform the unit vector of the incident 

ray from global (𝒊) to local (𝒊′) coordinates 

using the inverse rotation matrix (𝑹𝑇𝑜𝑡𝑎𝑙
−1 ):

◆ Reflect the ray across the local normal 

(𝒏′) to obtain the reflected ray (𝒓′) in local 

coordinates:

◆ Convert the reflected ray back into global 

coordinates (𝒓) using the rotation matrix 

(𝑹𝑡𝑜𝑡𝑎𝑙): 

Procedure for calculating the reflected ray's direction relative to the incident ray's.

Figure 9. Reflection is performed using local

coordinates, which involves reflecting the

incident ray across the normal to the u-v plane.

𝒏′: normal

w' axis <0, 0, 1>

𝒊′: Incident 

Ray

𝑖′⊥ 𝑟′⊥

𝑟′∥𝑖′∥

𝒓′: Reflected 

Ray

𝑎𝑖 𝑎𝑟

u' - v' Plane

and Reflective Surface

𝑖′∥ = 𝑟′∥
𝑖′⊥ = -𝑟′⊥

𝛼 =𝛼𝑟

𝒊′ = 𝑹𝑇𝑜𝑡𝑎𝑙
−1 𝜃, 𝜓 𝒊

𝒓′ = 𝒊′ − 2 𝒊′ ∙ 𝒏′ 𝒏′

𝒓 = 𝑹𝑇𝑜𝑡𝑎𝑙 𝜃, 𝜓 𝒓′



Example 1: Mount's Adjusters Tune the Reflected Beam's Direction
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Example 1 Overview: Adjusters Tune Orientation

◆ The mount's back plate does not move. 

◆ The mirror is installed in the mount's front 

plate, which can rotate around the pivot point.

◆ The mirror's orientation is tuned using only 

the mount's adjusters, which rotate the 

mount's front plate about the pivot point.

◆ The mirror rotates relative to the fixed global 

x-, y-, and z-axes, whose origin is chosen to 

be the front plate's pivot point.

◆ The incident ray's direction is fixed and 

parallel to the z-axis.

Find the reflected ray's direction, relative to the incident ray, after angle tuning.

y 

z x 

Back Plate

(Is Fixed)Front Plate 

(Can Rotate)

Pivot point: a ball 

pinned between front 

and back plates.

Pitch 

Adjuster

Yaw 

Adjuster

Figure 10. Mirror mounted in a KM200

kinematic mirror mount.

Incident 

Ray

Reflected 

Ray
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Example 1 Overview: Adjusters Tune Orientation

◆ The mount's back plate cannot move, 

since it is secured to a post, which is 

clamped in a post holder.

◆ The pitch and yaw adjusters are 

installed in the back plate. 

◆ The adjusters' tips push against the 

backside of the front plate.

– Tuning the pitch adjuster rotates the 

front plate around the x-axis.

– Tuning the yaw adjuster rotates the front 

plate around the y-axis.

Two rotations, one pitch and one yaw, were performed in succession.

y 

z 

x 

Pitch Adjustment

Yaw Adjustment

Figure 11. Adjusters can be used to

tune the mirror's pitch and yaw.

Yaw adjustment rotates front 

plate around y-axis.

Pitch adjustment rotates front 

plate around x-axis.

Back plate

does not move.

Front plate 

rotates.
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Calculate the Reflected Ray's Global Coordinates

◆ Transform the unit vector of the incident 

ray from global (𝒊) to local (𝒊′) coordinates 

using the inverse rotation matrix (𝑹𝑇𝑜𝑡𝑎𝑙
−1 ):

◆ Reflect the ray across the local normal 

(𝒏′) to obtain the reflected ray (𝒓′) in local 

coordinates:

◆ Convert the reflected ray back into global 

coordinates (𝒓) using the rotation matrix 

(𝑹𝑡𝑜𝑡𝑎𝑙): 

Procedure for calculating the reflected ray's direction relative to the incident ray's.

Figure 12. Reflection is performed using local

coordinates, which involves reflecting the

incident ray across the normal to the u-v plane.

𝒏′: normal

w' axis <0, 0, 1>

𝒊′: Incident 

Ray

𝑖′⊥ 𝑟′⊥

𝑟′∥𝑖′∥

𝒓′: Reflected 

Ray

𝑎𝑖 𝑎𝑟

u' - v' Plane

and Reflective Surface

𝑖′∥ = 𝑟′∥
𝑖′⊥ = -𝑟′⊥

𝛼 =𝛼𝑟

𝒊′ = 𝑹𝑇𝑜𝑡𝑎𝑙
−1 𝜃, 𝜓 𝒊

𝒓′ = 𝒊′ − 2 𝒊′ ∙ 𝒏′ 𝒏′

𝒓 = 𝑹𝑇𝑜𝑡𝑎𝑙 𝜃, 𝜓 𝒓′
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Mount Adjusters Tuned: Local to Global Transformations 

◆ The total rotation matrix (𝑹𝑇𝑜𝑡𝑎𝑙 𝜃, 𝜓 ), which converts local (unrotated) to 

global (rotated) coordinates, differs depending on whether pitch or yaw is 

adjusted first. 

If yaw, then pitch, was adjusted, 

the local to global transformation: 

𝑷𝐺𝑙𝑜𝑏𝑎𝑙 = 𝑹𝑇𝑜𝑡𝑎𝑙 𝜃, 𝜓 𝑷′𝐿𝑜𝑐𝑎𝑙

𝑹𝑥𝑦 𝜃, 𝜓 = 𝑹𝑥 𝜃 𝑹𝑦 𝜓

=
1 0 0
0 cos𝜃 −sin𝜃
0 sin𝜃 cos𝜃

cos𝜓 0 sin𝜓
0 1 0

−sin𝜓 0 cos𝜓

=

cos𝜓 0 sin𝜓
sin 𝜃 sin𝜓 cos 𝜃 − sin 𝜃 cos𝜓
− cos 𝜃 sin𝜓 sin 𝜃 cos 𝜃 cos𝜓

YawPitch

1 0 0
0 cos𝜃 −sin𝜃
0 sin𝜃 cos𝜃

=
cos𝜓 0 sin𝜓
0 1 0

−sin𝜓 0 cos𝜓

Yaw Pitch

=
cos𝜓 sin 𝜃 sin𝜓 cos 𝜃 sin𝜓
0 cos 𝜃 − sin 𝜃

− sin𝜓 sin 𝜃 cos𝜓 cos 𝜃 cos𝜓

𝑹𝑦𝑥 𝜓, 𝜃 = 𝑹𝑦 𝜓 𝑹𝑥 𝜃

If pitch, then yaw, was adjusted, 

the local to global transformation:

𝑹𝑥𝑦 𝜃, 𝜓 𝑹𝑦𝑥 𝜓, 𝜃
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Mount Adjusters Tuned: Global to Local Transformations 

◆ Global (rotated) to local (unrotated) coordinates:

– 𝑹−1 𝜃, 𝜓 is the inverse of 𝑹 𝜃,𝜓 . 

– In the case of rotation matrices, the inverse equals the transpose.

The inverse total rotation matrix (𝑹𝑇𝑜𝑡𝑎𝑙
−1 𝜃, 𝜓 ) converts global to local coordinates.

𝑷′𝐿𝑜𝑐𝑎𝑙 = 𝑹−1 𝜃,𝜓 𝑷𝐺𝑙𝑜𝑏𝑎𝑙

𝑹𝑥𝑦
−1 𝜃, 𝜓 =

cos𝜓 sin 𝜃 sin𝜓 − cos 𝜃 sin𝜓
0 cos 𝜃 sin 𝜃

sin𝜓 − sin 𝜃 cos𝜓 cos 𝜃 cos𝜓

If yaw, then pitch, was adjusted,  

the global to local transformation: 

If pitch, then yaw, was adjusted, 

the global to local transformation:

𝑹𝑦𝑥
−1 𝜓, 𝜃 =

cos𝜓 0 − sin𝜓
sin 𝜃 sin𝜓 cos 𝜃 sin 𝜃 cos𝜓
cos 𝜃 sin𝜓 − sin 𝜃 cos 𝜃 cos𝜓
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Mount Adjusters Tuned: Incident Ray in Local Coords

◆ Since incident ray is parallel to the z-axis, the unit vector of the incident ray in 

global coordinates is:  𝒊 = 0, 0,−1 =
0
0
−1

Start by transforming the unit vector of the incident ray into local coordinates.

𝒊′𝐿𝑜𝑐𝑎𝑙 = 𝑹𝑥𝑦
−1 𝜃, 𝜓 𝒊𝐺𝑙𝑜𝑏𝑎𝑙

𝑢′
𝑣′
𝑤′

=
cos𝜓 sin 𝜃 sin𝜓 − cos 𝜃 sin𝜓
0 cos 𝜃 sin 𝜃

sin𝜓 − sin 𝜃 cos𝜓 cos 𝜃 cos𝜓

0
0
−1

𝑢′
𝑣′
𝑤′

=
+cos 𝜃 sin𝜓

− sin 𝜃
− cos 𝜃 cos𝜓

𝒊′𝐿𝑜𝑐𝑎𝑙 = 𝑹𝑦𝑥
−1 𝜓, 𝜃 𝒊𝐺𝑙𝑜𝑏𝑎𝑙

𝑢′
𝑣′
𝑤′

=

cos𝜓 0 − sin𝜓
sin 𝜃 sin𝜓 cos 𝜃 sin 𝜃 cos𝜓
cos 𝜃 sin𝜓 − sin 𝜃 cos 𝜃 cos𝜓

0
0
−1

𝑢′
𝑣′
𝑤′

=

+ sin𝜓
−sin 𝜃 cos𝜓
− cos 𝜃 cos𝜓

If yaw, then pitch, was adjusted,

the incident ray in local coordinates:  

If pitch, then yaw, was adjusted, 

the incident ray in local coordinates: 
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Mount Adjusters Tuned: Reflected Ray in Local Coords

◆ Use the incident ray, in local coordinates, to calculate the reflected ray in local 

coordinates:

Calculate the unit vector of the reflected ray in local coordinates.

𝒓′𝐿𝑜𝑐𝑎𝑙 = 𝒊′𝐿𝑜𝑐𝑎𝑙 − 2 𝒊′𝐿𝑜𝑐𝑎𝑙 ∙ 𝒏′𝐿𝑜𝑐𝑎𝑙 𝒏′𝐿𝑜𝑐𝑎𝑙

𝑢′
𝑣′
𝑤′

=
+ cos 𝜃 sin𝜓

− sin 𝜃
− cos 𝜃 cos𝜓

− 2
+cos 𝜃 sin𝜓

− sin 𝜃
− cos 𝜃 cos𝜓

∙
0
0
1

0
0
1

If yaw, then pitch, was adjusted,

the reflected ray in local coordinates: 

If pitch, then yaw, was adjusted,

the reflected ray in local coordinates: 

𝑢′
𝑣′
𝑤′

=
+ cos 𝜃 sin𝜓

− sin 𝜃
+ cos 𝜃 cos𝜓

𝑢′
𝑣′
𝑤′

=

+ sin𝜓
− sin 𝜃 cos𝜓
− cos 𝜃 cos𝜓

− 2

+ sin𝜓
− sin 𝜃 cos𝜓
− cos 𝜃 cos𝜓

∙
0
0
1

0
0
1

𝑢′
𝑣′
𝑤′

=

+ sin𝜓
− sin 𝜃 cos𝜓
+ cos 𝜃 cos𝜓
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Mount Adjusters Tuned: Reflected Ray in Global Coords

◆ Transform the reflected ray from local coordinates into global coordinates:

Calculate the unit vector of the reflected ray in global coordinates.

𝒓𝐺𝑙𝑜𝑏𝑎𝑙 = 𝑹𝑥𝑦 𝜃, 𝜓 𝒓′𝐿𝑜𝑐𝑎𝑙

𝑥
𝑦
𝑧

=

cos𝜓 0 sin𝜓
sin 𝜃 sin𝜓 cos 𝜃 − sin 𝜃 cos𝜓
−cos 𝜃 sin𝜓 sin 𝜃 cos 𝜃 cos𝜓

+ cos 𝜃 sin𝜓
−sin 𝜃

+cos 𝜃 cos𝜓

=

2 cos 𝜃 cos𝜓 sin𝜓

−2 cos 𝜃 sin 𝜃 cos2𝜓

−cos2 𝜃 sin2𝜓 − sin2 𝜃 + cos2 𝜃 cos2𝜓

If yaw, then pitch, was adjusted,

the reflected ray in global coordinates: 

If pitch, then yaw, was adjusted,

the reflected ray in global coordinates: 

𝒓𝐺𝑙𝑜𝑏𝑎𝑙 = 𝑹𝑥𝑦 𝜃, 𝜓 𝒓′𝐿𝑜𝑐𝑎𝑙

𝑥
𝑦
𝑧

=
cos𝜓 sin 𝜃 sin𝜓 cos 𝜃 sin𝜓
0 cos 𝜃 − sin 𝜃

− sin𝜓 sin 𝜃 cos𝜓 cos 𝜃 cos𝜓

+ sin𝜓
− sin 𝜃 cos𝜓
+ cos 𝜃 cos𝜓

=

cos𝜓 sin𝜓 1 − sin2 𝜃 + cos2 𝜃
−2 cos 𝜃 sin 𝜃 cos𝜓

− sin2 𝜓 − sin2 𝜃 cos2𝜓 + cos2 𝜃 cos2𝜓
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Mount Adjusters Tuned: Reflected Ray in Global Coords

◆ If yaw, then pitch, was adjusted, the reflected vector in global coordinates: 

Simplify the z-component for the reflected ray in global coordinates.

= −cos2 𝜃 sin2 𝜓 − sin2 𝜃 + cos2 𝜃 cos2𝜓 + cos2 𝜃 cos2𝜓 −cos2 𝜃 cos2𝜓

= − cos2 𝜃 cos2𝜓 +sin2 𝜓 + sin2 𝜃 + 2 cos2 𝜃 cos2𝜓

= − cos2 𝜃 1 + sin2 𝜃 + 2 cos2 𝜃 cos2𝜓

= −1 + 2 cos2 𝜃 cos2𝜓

𝑥
𝑦
𝑧

=

2 cos 𝜃 cos𝜓 sin𝜓

−2 cos 𝜃 sin 𝜃 cos2𝜓

−cos2 𝜃 sin2𝜓 − sin2 𝜃 + cos2 𝜃 cos2𝜓
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Mount Adjusters Tuned: Reflected Ray in Global Coords

𝑥
𝑦
𝑧

=

cos𝜓 sin𝜓 1 − sin2 𝜃 + cos2 𝜃

−2 cos 𝜃 sin 𝜃 cos2𝜓

−sin2𝜓 − sin2 𝜃 cos2𝜓 + cos2 𝜃 cos2𝜓

= −1 + cos2𝜓 − sin2 𝜃 cos2𝜓 + cos2 𝜃 cos2𝜓

= −1 + cos2𝜓 cos2 𝜃 + sin2 𝜃 − sin2 𝜃 cos2𝜓 + cos2 𝜃 cos2𝜓

= −1 + 2cos2 𝜃 cos2𝜓

◆ If pitch, then yaw, was adjusted, the reflected vector in global coordinates: 

Simplify the x- and z-components for the reflected ray in global coordinates.

= cos𝜓 sin𝜓 cos2 𝜃 + cos2 𝜃

= 2 cos2 𝜃 cos𝜓 sin𝜓
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Mount Adjusters Tuned: Reflected Ray in Global Coords

Expression for the unit vector of the reflected ray in global coordinates.

𝑥
𝑦
𝑧

=

2 cos 𝜃 cos𝜓 sin𝜓

−2 cos 𝜃 sin 𝜃 cos2𝜓

−1 + 2cos2 𝜃 cos2𝜓

If first the mirror's yaw (𝜓) and then its 

pitch (𝜃) was adjusted, the reflected ray 

in global coordinates:

If first the mirror's pitch (𝜃) and then its 

yaw (𝜓) was adjusted, the reflected ray 

in global coordinates:

𝑥
𝑦
𝑧

=

2 cos2 𝜃 cos𝜓 sin𝜓
−2 cos 𝜃 sin 𝜃 cos𝜓

−1 + 2cos2 𝜃 cos2𝜓

◆ The z-component is the same in both cases, but the x- and y-components differ.
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Mount Adjusters Tuned: Using the Reflected Ray

◆ The reflected ray's unit vector 𝑥, 𝑦, 𝑧 is useful because,

– It points in the direction of the ray's path.

– It has a length of 1, so the point (𝑥, 𝑦, 𝑧) lies at the ray's tip: 𝑥2 + 𝑦2 + 𝑧2 = 1.

– It can be used to calculate the coordinates of any point on the beam path.

◆ To calculate an arbitrary point 𝑥2, 𝑦2, 𝑧2 on the reflected ray's path, 

– Calculate a new vector by multiplying the unit vector by a constant A:  

– The length of the new vector is A: 

– Choose the length so that:

– The point 𝑥2, 𝑦2, 𝑧2 lies at the new vector's tip. 

Use the reflected ray's unit vector to calculate arbitrary points on the ray path.

𝑥2, 𝑦2, 𝑧2 = (𝐴𝑥, 𝐴𝑦, 𝐴𝑧)

𝐴𝑥 2 + 𝐴𝑦 2 + 𝐴𝑧 2 = 𝐴

A 𝑥, 𝑦, 𝑧 = 𝐴𝑥, 𝐴𝑦, 𝐴𝑧
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Mount Adjusters Tuned: Points on the Reflected Ray

Calculating an arbitrary point on the beam path when another point is known.

𝑥
𝑦
𝑧

=

2 cos 𝜃 cos𝜓 sin𝜓

−2 cos 𝜃 sin 𝜃 cos2𝜓

−1 + 2cos2 𝜃 cos2𝜓

𝑥2 = 𝑥1 + 𝐴 2 cos 𝜃 cos𝜓 sin𝜓

𝑦2 = 𝑦1 + 𝐴 −2 cos 𝜃 sin 𝜃 cos2𝜓

𝑧2 = 𝑧1 + 𝐴 −1 + 2 cos2 𝜃 cos2𝜓

If yaw (𝜓), then pitch (𝜃), was adjusted,

the unit vector of the reflected ray:

If pitch (𝜃), then yaw (𝜓), was adjusted, 

the unit vector of the reflected ray:

Points on the reflected ray:

𝑥
𝑦
𝑧

=

2 cos2 𝜃 cos𝜓 sin𝜓
−2 cos 𝜃 sin 𝜃 cos𝜓

−1 + 2cos2 𝜃 cos2𝜓

Points on the reflected ray:

𝑥2 = 𝑥1 + 𝐴 2 cos2 𝜃 cos𝜓 sin𝜓

𝑦2 = 𝑦1 + 𝐴 −2 cos 𝜃 sin 𝜃 cos𝜓

𝑧2 = 𝑧1 + 𝐴 −1 + 2 cos2 𝜃 cos2𝜓

◆ The known point is: 𝑥1, 𝑦1, 𝑧1 .  

◆ The coordinates of the known point can be added to a vector equal to the 

reflected unit vector whose length has been scaled by the correct value of A.
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Mount Adjusters Tuned: Points on the Reflected Ray

◆ Calculate the required spacing between paired steering mirrors.

– Option 1: Vary the scaling factor (A) to change the distance from origin to beam point.

– Option 2: Use a known point coordinate (e.g. a new beam height y2), the pitch angle, 

and the yaw angle to calculate A. Then, calculate the other two point coordinates. 

Assume the known point is at the origin: 𝑥1, 𝑦1, 𝑧1 = (0, 0, 0).

𝑥2 = 𝐴 2 cos 𝜃 cos𝜓 sin𝜓

𝑦2 = 𝐴 −2 cos 𝜃 sin 𝜃 cos2𝜓

𝑧2 = 𝐴 −1 + 2 cos2 𝜃 cos2𝜓

If yaw (𝜓), then pitch (𝜃), was adjusted,

the separation between the origin and 

the point 𝑥2, 𝑦2, 𝑧2 on the reflected ray:

If pitch (𝜃), then yaw (𝜓), was adjusted, 

the separation between the origin and 

the point 𝑥2, 𝑦2, 𝑧2 on the reflected ray:

𝑥2 = 𝐴 2 cos2 𝜃 cos𝜓 sin𝜓

𝑦2 = 𝐴 −2 cos 𝜃 sin 𝜃 cos𝜓

𝑧2 = 𝐴 −1 + 2 cos2 𝜃 cos2𝜓



Example 2: Mount Rotation for Yaw, Adjuster Tuning for Pitch
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Example 2 Overview: Choose Global Coordinates

◆ The chosen fixed and global coordinate system:

– The x-y plane is in the plane of the unrotated 

mirror.

– The z-axis is aligned with the incident ray, whose 

orientation is fixed.

– The global coordinate system's origin is placed at 

the center of the unrotated mirror's surface.

◆ The directions of the incident and reflected rays 

are defined relative to these fixed, global 

coordinate axes.

◆ Rotating the mirror moves it relative to the 

global coordinate system.

Define a fixed, global coordinate system (x-, y-, and z-axes).

Figure 13. The x-, y-, and z-axes of

the global coordinate system.

Incident 

Ray

Post Axis
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Example 2 Overview: Rotate Entire Mount to Change Yaw

◆ Rotation around the post axis is an 

alternative to using the yaw adjuster.

– Both front and back plates rotate together 

as one rigid unit.

– The yaw adjuster would have rotated the 

front plate rotate to the back plate.

◆ The effect of rotating the mount:

– The reflective surface of the rotated mirror 

is at an angle to the x-y plane.

– The mirror's surface is no longer normal to 

the incident ray and z-axis.

– From the mount's point of view, the 

direction of the incident ray has changed. 

Effect of rotating the mount around the post axis.

Figure 14. Entire mount is rotated

around the post axis to change yaw.

Yaw Adjuster

(not used)Incident 

Ray

Post Axis

Post rotates to 

provide yaw.

Front Plate 

Back Plate
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Example 1 Overview: Use Mount's Adjuster to Tune Pitch

◆ Pitch is adjusted by tuning the mount's 

pitch adjuster.

– Mount's pitch adjuster is anchored in the 

back plate, which does not move.

– Adjuster's tip presses against the front 

plate's backside, forcing it to rotate.

◆ Tuning pitch rotates the front plate 

around the x'-, y'-, z'-axes.

– These axes are anchored to the mount's 

back plate, and the origin is the pivot point.

– Front plate rotates around the axes' origin, 

relative to the back plate.

Procedure for and effect of changing the mirror's pitch.

Figure 15. Mirror mounted in a KM200

kinematic mirror mount.

Back plate is stationary 

during pitch tuning.

Front plate

rotates.

Pivot point: a ball pinned between 

front and back plates.

Pitch 

Adjuster

Incident 

Ray

Pitch rotation is 

around x'-axis. 
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Problem Statement: Combining Rotation Types

◆ Effect of rotating the mount around the post axis to provide yaw:

– Front plate's position relative to back plate remains the same.

– Incident ray's angle of incidence with the mount changes.

◆ Effect of using mount adjusters.

– Front plate moves relative to the back plate.

– Incident ray's angle of incidence with respect 

to the mount does not change.

◆ Reflected ray's final direction is the same, whether

post axis rotation precedes or follows adjuster tuning. 

◆ Include the effect of the post axis rotation by converting 

the incident ray's unit vector into the mount's (x', y', z') coordinates.

Combining mount rotation around post axis with adjuster tuning of front plate.

Figure 16. Rotation Axes

Post Axis

Incident 

Ray
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Calculate the Reflected Ray's Global Coordinates

◆ Convert incident ray's unit vector from global (𝒊) 
to mount (𝒊′) coordinates using the (𝑹𝑦

−1) matrix:

◆ Convert incident ray from mount (𝒊′) to mirror (𝒊′′) 
coordinates using inverse rotation matrix (𝑹𝑇𝑜𝑡𝑎𝑙

−1 ):

◆ Reflect the ray across the local normal (𝒏′′) to

obtain the reflected ray (𝒓′′) in local coordinates:

◆ Convert reflected ray from mirror (𝒓′′) to mount (𝒓′) 
coordinates using the rotation matrix (𝑹𝑇𝑜𝑡𝑎𝑙): 

◆ Convert the reflected ray from mount (𝒓′) to global (𝒓)

coordinates using the rotation matrix (𝑹𝑦): 

Convert the incident ray to mount coordinates to account for post axis rotation.

𝒊′ = 𝑹 𝑦
−1 𝜙 𝒊

𝒓′′ = 𝒊′′ − 2 𝒊′
′
∙ 𝒏′′ 𝒏′′

𝒓 = 𝑹𝑦 𝜙 𝒓′

𝒊′′ = 𝑹𝑇𝑜𝑡𝑎𝑙
−1 𝜃, 𝜓 𝒊′

𝒓′ = 𝑹𝑇𝑜𝑡𝑎𝑙 𝜃, 𝜓 𝒓′′
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Post Axis Rotation Combined with Pitch Adjuster Tuning 

◆ Global coordinates of incident ray's unit vector:   𝒊 = 0, 0, −1 =
0
0
−1

◆ Express the orientation of the incident ray's unit vector in the mount's 

coordinate system. Use the inverse yaw rotation matrix (𝑹𝑦
−1 𝜙 ), where 𝜙

is the CCW rotation angle of the mount around the post axis.

Example: Reflected ray orientated via post axis rotation and mount adjuster tuning. 

𝑥′
𝑦′

𝑧′

=
cos𝜙 0 − sin𝜙
0 1 0

sin𝜙 0 cos𝜙

0
0
−1

=
sin𝜙
0

− cos𝜙

𝒊′𝑀𝑜𝑢𝑛𝑡 = 𝑹 𝑦
−1 𝜙 𝒊𝐺𝑙𝑜𝑏𝑎𝑙
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Post Axis Rotation Combined with Pitch Adjuster Tuning 

◆ Express the incident ray in the local coordinates of the reflective surface, as 

was done in Example 1. 

◆ In this case, only the pitch adjuster was tuned (𝑹𝑇𝑜𝑡𝑎𝑙
−1 𝜃, 𝜓 = 𝑹 𝑥

−1 𝜃 ). 
Tuning the adjuster rotates the mirror CCW around the x'-axis by an angle 𝜃. 

Example: Reflected ray orientated via post axis rotation and mount adjuster tuning. 

𝑢′
𝑣′
𝑤′

=
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

sin 𝜙
0

− cos𝜙
=

sin𝜙
− sin 𝜃 cos𝜙
− cos 𝜃 cos𝜙

𝒊′′𝐿𝑜𝑐𝑎𝑙 = 𝑹𝑇𝑜𝑡𝑎𝑙
−1 𝜃, 𝜓 𝒊′𝑀𝑜𝑢𝑛𝑡 = 𝑹 𝑥

−1 𝜃 𝒊′𝑀𝑜𝑢𝑛𝑡
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Post Axis Rotation Combined with Pitch Adjuster Tuning 

◆ Reflect the incident ray across the surface normal. The result is the unit 

vector of the reflected ray, expressed in the local coordinates of the mirror. 

Example: Reflected ray orientated via post axis rotation and mount adjuster tuning. 

𝒓′′ = 𝒊′′ − 2 𝒊′
′′
∙ 𝒏′′ 𝒏′′

𝑢′
𝑣′
𝑤′

=

+ sin𝜙
− sin 𝜃 cos𝜙
− cos 𝜃 cos𝜙

− 2

+ sin𝜙
− sin 𝜃 cos𝜙
− cos 𝜃 cos𝜙

∙
0
0
1

0
0
1

𝑢′
𝑣′
𝑤′

=

+ sin𝜙
− sin 𝜃 cos𝜙
+ cos 𝜃 cos𝜙
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Post Axis Rotation Combined with Pitch Adjuster Tuning 

Example: Reflected ray orientated via post axis rotation and mount adjuster tuning. 

𝑥′
𝑦′

𝑧′

=
1 0 0
0 cos 𝜃 −sin 𝜃
0 sin 𝜃 cos 𝜃

+ sin𝜙
− sin 𝜃 cos𝜙
+ cos 𝜃 cos𝜙

𝒓′ = 𝑹𝑡𝑜𝑡𝑎𝑙 𝜃, 𝜓 𝒓′′ = 𝑹𝑥 𝜃 𝒓′′

◆ Express the reflected ray in the coordinates of the mount. Since only the 

pitch adjuster was tuned, (𝑹𝑇𝑜𝑡𝑎𝑙 𝜃, 𝜓 = 𝑹𝑥 𝜃 ). 

𝑥′
𝑦′

𝑧′

=

+sin𝜙
−2 cos 𝜃 sin 𝜃 cos𝜙

+ cos2 𝜃 − sin2 𝜃 cos𝜙
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Post Axis Rotation Combined with Pitch Adjuster Tuning 

Example: Reflected ray orientated via post axis rotation and mount adjuster tuning. 

𝑥
𝑦
𝑧

=
cos𝜙 0 sin𝜙
0 1 0

− sin𝜙 0 cos𝜙

+ sin𝜙
−2 cos 𝜃 sin 𝜃 cos𝜙

+ cos2 𝜃 − sin2 𝜃 cos𝜙
=

+cos𝜙 sin𝜙 + cos2 𝜃 − sin2 𝜃 cos𝜙 sin𝜙
−2 cos 𝜃 sin 𝜃 cos𝜙

− sin2 𝜙 + cos2 𝜃 − sin2 𝜃 cos2𝜙

𝒓 = 𝑹𝑦 𝜙 𝒓′

◆ Express the unit vector of the reflected ray in global coordinates using the 

𝑹𝑦 𝜙 matrix. Compare this result to those on Slide 25.

𝑥
𝑦
𝑧

=

cos2 𝜃 + sin2 𝜃 + cos2 𝜃 − sin2 𝜃 cos𝜙 sin𝜙
−2 cos 𝜃 sin 𝜃 cos𝜙

−1 + cos2 𝜃 + sin2 𝜃 cos2𝜙 + cos2 𝜃 − sin2 𝜃 cos2𝜙

𝑥
𝑦
𝑧

=

2 cos2 𝜃 cos𝜙 sin𝜙
−2 cos 𝜃 sin 𝜃 cos𝜙

−1 + 2 cos2 𝜃 cos2𝜙
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Post Axis Rotation Combined with Pitch Adjuster Tuning 

◆ Start with the reflected ray's unit vector:

◆ Multiply the reflected ray's unit vector, 𝑥, 𝑦, 𝑧 , 

by a scaling factor (A). Add the result to the 

coordinates of a known point 𝑥1, 𝑦1, 𝑧1 on 

the reflected ray.

◆ If the reflected ray's path began at the origin

( 𝑥1, 𝑦1, 𝑧1 = 0, 0, 0 ), points on the reflected

ray can be calculated using the equations at 

the right and varying the scaling factor (A).

Calculate arbitrary points 𝑥2, 𝑦2, 𝑧2 on the reflected ray.

𝑥2 = 𝑥1 + 𝐴 2 cos2 𝜃 cos𝜙 sin𝜙

𝑦2 = 𝑦1 + 𝐴 −2 cos 𝜃 sin 𝜃 cos𝜙

𝑧2 = 𝑧1 + 𝐴 −1 + 2 cos2 𝜃 cos2𝜙

𝑥2 = 𝐴 2 cos2 𝜃 cos𝜙 sin𝜙

𝑦2 = 𝐴 −2 cos 𝜃 sin 𝜃 cos𝜙

𝑧2 = 𝐴 −1 + 2 cos2 𝜃 cos2𝜙

𝑥
𝑦
𝑧

=

2 cos2 𝜃 cos𝜙 sin𝜙
−2 cos 𝜃 sin 𝜃 cos𝜙

−1 + 2 cos2 𝜃 cos2𝜙


