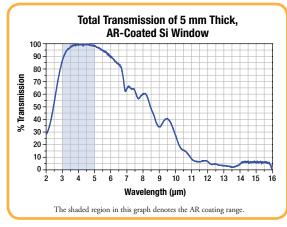
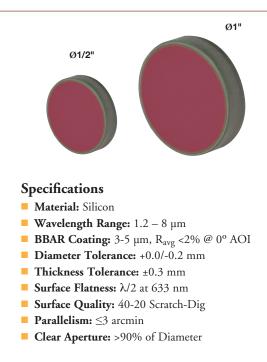

CHAPTERS **Optical Elements Polarization Optics Optical Isolators Optical Systems Optics Kits** SECTIONS **Spherical Lenses** Achromatic Lens **Aspheric Lenses Cylindrical Lense** Mirrors **Spectral Filters ND** Filters **Beamsplitters** Prisms Gratings Windows Beam Displacers Diffusers

Zinc Selenide Windows

Thorlabs' Ø1/2" and Ø1" Zinc Selenide (ZnSe) PrecisionWindows are available either uncoated or with an AR coating for the $8 - 12 \,\mu m$ range on both sides. Due to its wide transmission band and low absorption in the red portion of the visible spectrum, ZnSe in an ideal material for use in optical systems that combine CO2 lasers, operating at 10.6 microns, with HeNe alignment lasers.


ZnSe has a broader transmission range than silicon or germanium; however, its use is typically limited to applications requiring the broad spectral range it offers because of the ease with which it scratches.


00			Total Transmission of 5 mm Thick, AR-Coated ZnSe Window														
		I		P													
90-			-		\mathbb{C}								N				Ŧ
70				1													
60			-	1	F									-			7
50-		1		-											N		
40 - 30	V	N	/														Ŧ
20				#													X
10			-														
0++	2 3	4	++ 5	6	7	8	9	10	10	12	13	14	15	16 1	7 1	8 1	92
Wavelength (μm)																	
The shaded region in this graph denotes the AR coating range.																	
2	20 - 1 10 - 1 0 - 1	20 - 1 V 10 - 1 0 0 - 1 2 3	20 10 10 1 2 3 4	20 10 10 1 2 3 4 5	20 10 1 1 2 3 4 5 6	20 - 1 10 - 1 0 - 1 1 2 3 4 5 6 7	20 10 1 1 2 3 4 5 6 7 8 V	20 10 1 1 1 2 3 4 5 6 7 8 9 Wave	20	20	20	20	20 10 10 1 2 3 4 5 6 7 8 9 10 10 12 13 14 Wavelength (μm)	20	20 10 10 1 2 3 4 5 6 7 8 9 10 10 12 13 14 15 16 1 Wavelength (μm)	20 - 1 10 - 1 1 2 3 4 5 6 7 8 9 10 10 12 13 14 15 16 17 13 Wavelength (μm)	20 - 1 10 - 1 1 2 3 4 5 6 7 8 9 10 10 12 13 14 15 16 17 18 19 Wavelength (μm)

e											
ITEM #	AR COATING	DIAMETER	THICKNESS	\$			£		€		RMB
WG71050	Uncoated	Ø1"	5.0 mm	\$ 15	8.00	£	113.76	€	137,46	¥	1,259.26
WG70530-F	8-12 μm	Ø1/2"	3.0 mm	\$ 15	8.00	£	113.76	€	137,46	¥	1,259.26
WG70530-F	8-12 μm	Ø1"	5.0 mm	\$ 19	4.00	£	139.68	€	168,78	¥	1,546.18

Silicon Windows

Thorlabs' Silicon (Si) Precision Windows are available in Ø1/2" and Ø1" sizes. An AR coating is deposited on both sides, which maximizes transmission in the 3 to 5 µm range, while still maintaining high transmission in the 1.2 to 8 µm spectral region. Silicon offers high thermal conductivity and low density. Since Silicon has a strong absorption band at 9 µm, it is not suitable for use with CO2 laser transmission applications.

ITEM #	DIAMETER	THICKNESS	\$		£		£		£		€		RMB	
WG80530-E	0.50"	3.0 mm	\$	95.00	£	68.40	€	82,65	¥	757.15				
WG81050-E	1.00"	5.0 mm	\$	134.60	£	96.91	€	117,10	¥	1,072.76				