

PS705 - March 22, 2018

Item # PS705 was discontinued on March 22, 2018. For informational purposes, this is a copy of the website content at that time and is valid only for the stated product.

RIGHT-ANGLE PRISMS

Hide Overview

OVERVIEW

Features

- · Sizes Ranging from 3 mm to 60 mm
- · Fabricated from N-BK7, UV Fused Silica, CaF2, ZnSe, or Ge
- N-BK7 Prisms Available with an AR Coating on the Hypotenuse or Both Legs

Available in sizes ranging from 3 mm to 60 mm, Thorlabs' high precision Right-Angle Prisms can be used to deviate a light path by 90° or 180°, depending on which surface is used as the input for the light source. These prisms are fabricated from N-BK7, UV fused silica, CaF2, ZnSe, or Ge. Our N-BK7 prisms are available uncoated or with one of our three standard broadband antireflection coatings (-A: 350 - 700 nm, -B: 650 - 1050 nm, -C: 1050 - 1700 nm) on either the hypotenuse or both legs, thereby reducing surface losses.

Due to total internal reflection (TIR), Video 1 (to the left below) demonstrates how the right angle prism can be used as a 90° reflector. When the input light is incident on one of the prism's legs, it undergoes TIR at the glass/air boundary of the hypotenuse and exits via the other prism leg. This 90° deviation of the input light makes the right angle prism a suitable alternative for a mirror.

Video 2 (to the right below) shows how the right-angle prism can be used as a 180° retroreflector. When the input light is incident on the face of the hypotenuse, it undergoes TIR at the glass/air boundary at the prism legs. It undergoes TIR a second time at the next prism leg and exits the hypotenuse in a path parallel to that of the input beam. Like the retroreflector, the 180° deviation of the light path is independent of the angle at which the light enters the

Please refer to the Prism Guide tab above for assistance in selecting the appropriate prism for your application. For additional antireflecton coating requests, please contact Tech Support.

Video 1. Right Angle Prism Acting as a 90° Reflector

Video 2. Right Angle Prism Acting as a 180° Retroreflector

Hide Specs

SPECS

Material	UV Fused Silicab	N-BK7 ^{a, b}	CaF ₂ ^b	ZnSe ^b	Germanium ^b			
Clear Aperture	70% of Face Length and Width							
Surface Quality	40-20 Scratch-Dig 60-40 Scratch-Dig							
Surface Flatness @ 633 nm	λ/10		λ/2					
Number of Polished Faces	3 (Triangular Faces are Fine Ground)							

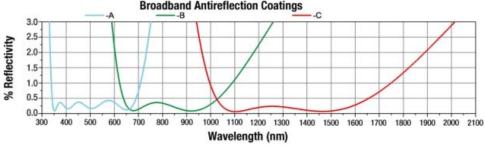
- a. For the PS911K, please see the specifications listed to the right.
- b. Click Link for Detailed Specifications on the Substrate Glass

PS911K Knife-Edge Prism Specifications									
Material	N-BK7 ^a								
Clear Aperture (Legs)	Entire Face Length And Width Excluding a 1.25 mm Border Along Beveled Edges (No Bevel Between the Two Legs)								
Clear Aperture (Hypotenuse)	90% of Face Length and Width								
Surface Quality	20-10 Scratch-Dig								
Surface Flatness @ 633 nm	<i>N</i> /8								
Number of Polished Faces	3 (Triangular Faces are Fine Ground)								

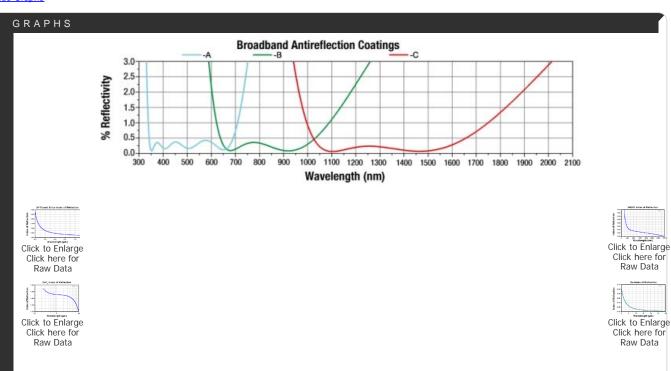
a. Click Link for Detailed Specifications on the Substrate Glass

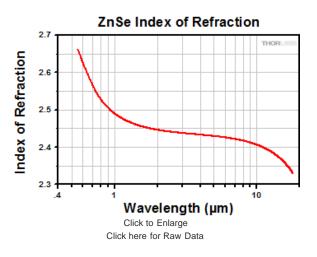
Uncoated Prisms

		A = B	С	н	Al	Dimensional
Item #	Material	(mm)	(mm)	(mm)	Angle Tolerance	Tolerance
	Material	, ,	, ,	, ,		E
PS605		3	4.2	3	±10 arcmin	±0.2 mm
PS609		5	7.1	5	±3 arcmin	±0.2 mm
PS610		10	14.1	10	±3 arcmin	±0.2 mm
PS614		12.5	17.7	12.5	±3 arcmin	±0.2 mm
PS615	UV Fused Silica ^a	15	21.2	15	±3 arcmin	±0.2 mm
PS608		20	28.3	20	±3 arcmin	±0.2 mm
PS611		25	35.4	25	±3 arcmin	±0.2 mm
PS612		40	56.6	40	±3 arcmin	±0.2 mm
PS613		60	84.9	60	±3 arcmin	±0.2 mm
PS905		3	4.2	3	±10 arcmin	±0.1 mm
PS909		5	7.1	5	±3 arcmin	±0.1 mm
PS910		10	14.1	10	±3 arcmin	±0.1 mm
PS914		12.5	17.7	12.5	±3 arcmin	±0.2 mm
PS915	N-BK7	15	21.2	15	±3 arcmin	±0.2 mm
PS908		20	28.3	20	±3 arcmin	±0.1 mm
PS911		25	35.4	25	±3 arcmin	±0.1 mm
PS912		40	56.6	40	±3 arcmin	±0.1 mm
PS913		60	84.9	60	±3 arcmin	±0.1 mm
PS703		10	14.1	10	±10 arcmin	+0.0/-0.3 mm
PS706	CaF ₂	12.5	17.7	12.5	±10 arcmin	±0.2 mm
PS707	oui 2	15	21.2	15	±10 arcmin	±0.2 mm
PS704		25	35.4	25	±10 arcmin	+0.0/-0.3 mm
PS701	ZnSe	10	14.1	10	±10 arcmin	+0.0/-0.3 mm
PS702	ZIISE	25	35.4	25	±10 arcmin	+0.0/-0.3 mm
PS705	Ge	25	35.4	25	±10 arcmin	+0.0/-0.3 mm


a Corning Code 7980 Standard Grade Fused Silica

Coated Prisms


Item #	Material	A = B (mm)	C (mm)	H (mm)	Angle Tolerance	Dimensional Tolerance	AR Coating	AR Coating Performance		
PS910H-A					±3 arcmin	±0.1 mm	350 - 700 nm, Hypotenuse			
PS910H-B					±3 arcmin	±0.1 mm	650 - 1050 nm, Hypotenuse			


PS910H-C		10.0	14.1	10.0	±3 arcmin	±0.1 mm	1050 - 1700 nm, Hypotenuse
PS910L-A		10.0	14.1	10.0	±3 arcmin	±0.1 mm	350 - 700 nm, Legs
PS910L-B					±3 arcmin	±0.1 mm	650 - 1050 nm, Legs
PS910L-C					±3 arcmin	±0.1 mm	1050 - 1700 nm, Legs
PS914H-A					±3 arcmin	±0.2 mm	350 - 700 nm, Hypotenuse
PS914H-B					±3 arcmin	±0.2 mm	650 - 1050 nm, Hypotenuse
PS914H-C		12.5	17.7	12.5	±3 arcmin	±0.2 mm	1050 - 1700 nm, Hypotenuse
PS914L-A		12.5	17.7		±3 arcmin	±0.2 mm	350 - 700 nm, Legs
PS914L-B					±3 arcmin	±0.2 mm	650 - 1050 nm, Legs
PS914L-C	N-BK7				±3 arcmin	±0.2 mm	1050 - 1700 nm, Legs
PS915H-A	IN-DIC!			±3 arcmin	±0.2 mm	350 - 700 nm, Hypotenuse	
PS915H-B					±3 arcmin	±0.2 mm	650 - 1050 nm, Hypotenuse
PS915H-C		15.0	21.2	15.0	±3 arcmin	±0.2 mm	1050 - 1700 nm, Hypotenuse
PS915L-A		15.0	21.2	15.0	±3 arcmin	±0.2 mm	350 - 700 nm, Legs
PS915L-B					±3 arcmin	±0.2 mm	650 - 1050 nm, Legs
PS915L-C					±3 arcmin	±0.2 mm	1050 - 1700 nm, Legs
PS908H-A					±3 arcmin	±0.1 mm	350 - 700 nm, Hypotenuse
PS908H-B					±3 arcmin	±0.1 mm	650 - 1050 nm, Hypotenuse
PS908H-C		20.0	28.3	20.0	±3 arcmin	±0.1 mm	1050 - 1700 nm, Hypotenuse
PS908L-A		20.0	20.3	20.0	±3 arcmin	±0.1 mm	350 - 700 nm, Legs
PS908L-B					±3 arcmin	±0.1 mm	650 - 1050 nm, Legs
PS908L-C					±3 arcmin	±0.1 mm	1050 - 1700 nm, Legs
Broadband Antireflection Coatings							

 $R_{avg} \le 0.5\%$ at AOI = 0° Over Specified Wavelength Range

Hide Graphs

Hide Prism Guide

PRISM GUIDE

Selection Guide for Prisms

Thorlabs offers a wide variety of prisms, which can be used to reflect, invert, rotate, disperse, steer, and collimate light. For prisms and substrates not listed below, please contact Tech Support.

Beam Steering Prisms

beam steering Frisms									
Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications			
N-BK7, UV Fused Silica, Germanium, Calcium Fluoride, or Zinc Selenide	Fused Silica,	90°	90°	No		90° reflector used in optical systems such as telescopes and periscopes.			
	180°	180°	No		180° reflector, independent of entrance beam angle. Acts as a non-reversing mirror and can be used in binocular configurations.				
Unmounted Retroreflectors and Mounted Retroreflectors	N-BK7	180°	180°	No		180° reflector, independent of entrance beam angle. Beam alignment and beam delivery. Substitute for mirror in applications where orientation is difficult to control.			
Unmounted Penta Prisms and Mounted Penta Prisms	N-BK7	90°	No	No		90° reflector, without inversion or reversal of the beam profile. Can be used for alignment and optical tooling.			
Roof Prisms	N-BK7	90°	90°	180° Rotation		90° reflector, inverted and rotated (deflected left to right and top to bottom). Can be used for alignment and optical tooling.			

Unmounted Dove Prisms And Mounted Dove Prisms		No	180°	2x Prism Rotation	20 40	Dove prisms may invert, reverse, or rotate an image based on which face the light is incident on. Prism in a beam rotator orientation.
	N-BK/	180°	180°	No		Prism acts as a non-reversing mirror. Same properties as a retroreflector or right angle (180° orientation) prism in an optical setup.
Wedge Prisms N-BK7		Models	No	No		Beam steering applications. By rotating one wedged prism, light can be steered to trace the circle defined by 2 times the specified deviation angle.
	N-BK7			No		Variable beam steering applications. When both wedges are rotated, the beam can be moved anywhere within the circle defined by 4 times the specified deviation angle.
Coupling Prisms	Rutile (TiO ₂) or GGG	Variable ^a	No	No	Latter Fam Substrate	High index of refraction substrate used to couple light into films. Rutile used for n _{film} > 1.8 GGG used for n _{film} < 1.8

a. Depends on Angle of Incidence and Index of Refraction

Dispersive Prisms

Dispersive Prisi	1115					
Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Equilateral Prisms	F2, N-SF11, Calcium Fluoride, or Zinc Selenide	Variable ^a	No	No		Dispersion prisms are a substitute for diffraction gratings. Use to separate white light into visible spectrum.
Dispersion Compensating Prism Pairs	Fused Silica, Calcium Fluoride, SF10, or N-SF14	Variable Vertical Offset	No	No		Compensate for pulse broadening effects in ultrafast laser systems. Can be used as an optical filter, for wavelength tuning, or dispersion compensation.

Pellin Broca Prisms	N-BK7, UV Fused Silica, or Calcium Fluoride	90°	90°	No	es P	Ideal for wavelength separation of a beam of light, output at 90°. Used to separate harmonics of a laser or compensate for group velocity dispersion.

a. Depends on Angle of Incidence and Index of Refraction

Beam Manipulating Prisms

Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Anamorphic Prism Pairs	N-KZFS8 or N-SF11	Variable Vertical Offset	No	No	+	Variable magnification along one axis. Collimating elliptical beams (e.g., laser diodes) Converts an elliptical beam into a circular beam by magnifying or contracting the input beam in one axis.
Axicons	UV Fused Silica	Variable ^a	No	No		Creates a conical, non- diverging beam with a Bessel intensity profile from a collimated source.

a. Depends on Prism Physical Angle

Polarization Altering Prisms

Folarization Attenting Frisins									
Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications			
Glan-Taylor, Glan- Laser, and α-BBO Glan-Laser Polarizers	Glan-Taylor: Calcite Glan-Laser: α- BBO or Calcite	<i>p</i> -pol 0° s-pol 112° ^a	No	No	***	Double prism configuration and birefringent calcite produce extremely pure linearly polarized light. Total Internal Reflection of spol. at the gap between the prism while p-pol. is transmitted.			
Rutile Polarizers	Rutile (TiO ₂)	s-pol 0° p-pol. absorbed by housing	No	No	Unpotarized Light Light Control Contro	Double prism configuration and birefringent rutile (TiO ₂) produce extremely pure linearly polarized light. Total Internal Reflection of <i>p</i> -pol. at the gap between the prisms while <i>s</i> -pol. is transmitted.			
Double Glan-Taylor Polarizers	Calcite	p-pol 0° s-pol. absorbed by housing	No	No	*	Triple prism configuration and birefringent calcite produce maximum polarized field over a large half angle. Total Internal Reflection of spol. at the gap between the prism while p-pol. is			

						transmitted.
Glan Thompson Polarizers	Calcite	p-pol 0° s-pol. absorbed by housing	No	No	1991	Double prism configuration and birefringent calcite produce a polarizer with the widest field of view while maintaining a high extinction ratio. Total Internal Reflection of spol. at the gap between the prism while p-pol. is transmitted.
Wollaston Prisms and Wollaston Polarizers	Quartz, Magnesium Fluoride, α- BBO, Calcite, Yttrium Orthovanadate	Symmetric p-pol. and s-pol. deviation angle	No	No	+++	Double prism configuration and birefringent calcite produce the widest deviation angle of beam displacing polarizers. s-pol. and p-pol. deviate symmetrically from the prism. Wollaston prisms are used in spectrometers and polarization analyzers.
Rochon Prisms	Magnesium Fluoride or Yttrium Orthovanadate	Ordinary Ray: 0° Extraordinary Ray: deviation angle	No	No	+++	Double prism configuration and birefringent MgF ₂ or YVO ₄ produce a small deviation angle with a high extinction ratio. Extraordinary ray deviates from the input beam's optical axis, while ordinary ray does not deviate.
Beam Displacing Prisms	Calcite	2.7 or 4.0 mm Beam Displacement	No	No		Single prism configuration and birefringent calcite separate an input beam into two orthogonally polarized output beams. s-pol. and p-pol. are displaced by 2.7 or 4.0 mm. Beam displacing prisms can be used as polarizing beamsplitters where 90° separation is not possible.
Fresnel Rhomb		Linear to circular polarization Vertical Offset	No	No	CRICLIAN OUTFUT POLANDATION LINEAR INPUT POLANDATION	N/4 Fresnel Rhomb Retarder turns a linear input into circularly polarized output. Uniform N/4 retardance over a wider wavelength range compared to birefringent wave plates.
Retarders	N-BK7	Rotates linearly polarized light 90°	No	No	1111	N/2 Fresnel Rhomb Retarder rotates linearly polarized light 90°. Uniform N/2 retardance over a wider wavelength range compared to birefringent wave plates.

Beamsplitter Prisms

Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Beamsplitter Cubes	N-BK7	50:50 splitting ratio, 0° and 90° s- and p- pol. within 10% of each other	No	No		Double prism configuration and dielectric coating provide 50:50 beamsplitting nearly independent of polarization. Non-polarizing beamsplitter over the specified wavelength range.
Polarizing Beamsplitter Cubes	N-BK7, UV Fused Silica, or N-SF1	<i>p</i> -pol 0° s-pol 90°	No	No		Double prism configuration and dielectric coating transmit <i>p</i> -pol. light and reflect s-pol. light. For highest polarization use the transmitted beam.

Hide UV Fused Silica Right-Angle Prisms, Uncoated (185 nm - 2.1 μm)

UV Fused Silica Right-Angle Prisms, Uncoated (185 nm - 2.1 µm)

Choose a UV Fused Silica Right-Angle Prism if your application would benefit from higher transmission in the UV or a lower coefficient of thermal expansion. UV-grade fused silica offers high transmission in the deep UV and exhibits virtually no laser-induced fluorescence (as measured at 193 nm), making it an ideal choice for applications from the UV to the near IR. For a given wavelength, UV fused silica also has a lower index of refraction than N-BK7. Please see the *Graphs* tab for a graph of index of refraction vs wavelength for UV fused silica.

Click to Enlarge Click Here for Raw Data

Part Number	Description	Price	Availability
PS605	UV Fused Silica Right Angle Prism, Uncoated, 3 mm	\$59.93	Today
PS609	UV Fused Silica Right-Angle Prism, Uncoated, 5 mm	\$63.50	Today
PS610	UV Fused Silica Right-Angle Prism, Uncoated, 10 mm	\$70.38	Today
PS614	Customer Inspired!UV Fused Silica Right-Angle Prism, Uncoated, 12.5 mm	\$72.93	Today
PS615	Customer Inspired!UV Fused Silica Right-Angle Prism, Uncoated, 15 mm	\$75.23	Today
PS608	UV Fused Silica Right-Angle Prism, Uncoated, 20 mm	\$77.52	Today
PS611	UV Fused Silica Right-Angle Prism, Uncoated, 25 mm	\$87.98	Today
PS612	UV Fused Silica Right-Angle Prism, Uncoated, 40 mm	\$207.06	Today
PS613	UV Fused Silica Right-Angle Prism, Uncoated, 60 mm	\$399.84	Today

Hide N-BK7 Right-Angle Prisms, Uncoated (350 nm - 2 µm)

N-BK7 Right-Angle Prisms, Uncoated (350 nm - 2 μm)

Choose an N-BK7 Right-Angle Prism if the additional benefits of fused silica are not required. N-BK7 provides excellent transmittance in the visible and near infrared portions of the spectrum. Please see the *Graphs* tab for a graph of index of refraction vs wavelength for N-BK7. Additionally, N-BK7 is a viable choice for UV applications down to 350 nm. For applications that demand maximum transmission, please see our AR-coated N-BK7 prisms below.

Click to Enlarge
Click Here for
Raw Data

Our PS911K Knife-Edge prism offers the same features as our standard N-BK7 right angle prisms but features an unbeveled, precision 90° edge between the two legs. This means that the clear aperture reaches across this surface, making this prism ideal for applications where a larger clear aperture is beneficial. It also offers enhanced surface flatness and quality; see the Specs tab for Details

Part Number	Description	Price	Availability
PS905	N-BK7 Right-Angle Prism, Uncoated, 3 mm	\$37.23	Today
PS909	N-BK7 Right-Angle Prism, Uncoated, 5 mm	\$38.51	Today
PS910	N-BK7 Right-Angle Prism, Uncoated, 10 mm	\$43.10	Today
PS914	Customer Inspired!N-BK7 Right-Angle Prism, Uncoated, 12.5 mm	\$44.63	Today
PS915	Customer Inspired!N-BK7 Right-Angle Prism, Uncoated, 15 mm	\$47.18	Today
PS908	N-BK7 Right-Angle Prism, Uncoated, 20 mm	\$48.71	Today

PS911	N-BK7 Right-Angle Prism, Uncoated, 25 mm	\$55.59	Today
PS911K	Customer Inspired!N-BK7 Knife-Edge Right-Angle Prism, Uncoated, 25 mm	\$108.12	Today
PS912	N-BK7 Right-Angle Prism, Uncoated, 40 mm	\$95.12	Today
PS913	N-BK7 Right-Angle Prism, Uncoated, 60 mm	\$143.82	Today

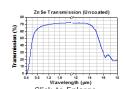
Hide CaF₂ Right-Angle Prisms, Uncoated (180 nm - 8 μm)

CaF₂ Right-Angle Prisms, Uncoated (180 nm - 8 µm)

Choose a CaF₂ Right-Angle Prism for applications requiring high transmission in the 180 nm - 8 µm range. The material exhibits a low refractive index, varying from 1.35 to 1.51 within its usage range of 180 nm to 8.0 µm, as well as an extremely high laser damage threshold. Please see the *Graphs* tab for a graph of index of refraction vs wavelength for calcium fluoride. Calcium fluoride is also fairly chemically inert and offers superior hardness compared to its barium fluoride, magnesium fluoride, and lithium fluoride cousins.

Click to Enlarge
Transmission data is for two 25
mm right-angle prisms contacted
into a cube. Click here for raw
data

Part Number	Description		Availability	
PS703	CaF ₂ Right-Angle Prism, Uncoated, 10 mm	\$324.36	Today	
PS706	Customer Inspired!CaF ₂ Right-Angle Prism, Uncoated, 12.5 mm	\$376.38	Today	
PS707	Customer Inspired!CaF ₂ Right-Angle Prism, Uncoated, 15 mm	\$401.88	Today	
PS704	CaF ₂ Right-Angle Prism, Uncoated, 25 mm	\$506.94	Today	


Hide ZnSe Right-Angle Prisms, Uncoated (600 nm - 16 μm)

ZnSe Right-Angle Prisms, Uncoated (600 nm - 16 µm)

Zinc Selenide is ideal for use in the 600 nm - 16 μ m range. It features low absorption (including in the red visible wavelength range) and high resistance to thermal shock. ZnSe is ideal for use in CO₂ laser systems operating at 10.6 μ m, including those with HeNe alignment lasers. Please see the *Graphs* tab for a graph of index of refraction vs wavelength for ZnSe.

When handling optics, one should always wear gloves. This is especially true when working with zinc selenide, as it is a hazardous material. For your safety, please follow all proper precautions, including wearing gloves when handling these prisms and thoroughly washing your hands afterward. Due to the low hardness of ZnSe, additional care should be taken to not damage these prisms. Click here to download a pdf of the MSDS for ZnSe.

Thorlabs will accept all ZnSe prisms back for proper disposal. Please contact Tech Support to make arrangements for this service.

Click to Enlarge Transmission data is for two 25 mm right-angle prisms contacted into a cube. Click here for raw data.

Part Number	Description	Price	Availability	
PS701	ZnSe Right-Angle Prism, Uncoated, 10 mm	\$554.88	Today	
PS702	ZnSe Right-Angle Prism, Uncoated, 25 mm	\$938.40	Today	

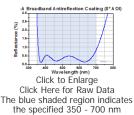
Hide Ge Right-Angle Prisms, Uncoated (2 - 16 μm)

Ge Right-Angle Prisms, Uncoated (2 - 16 μm)

Due to its broad transmission range ($2 - 16 \mu m$) and opacity in the visible portion of the spectrum, Germanium is well suited for IR applications. It is also inert to air, water, alkalis, and acids (except nitric acid). Germanium's transmission properties are highly temperature sensitive. Germanium is nearly opaque at 100 °C and completely non-transmissive at 200 °C. Please see the *Graphs* tab for a graph of index of refraction vs wavelength for germanium.

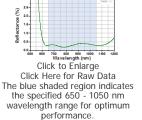
When handling optics, one should always wear gloves. This is especially true when working with germanium, as dust from the material is hazardous. For your safety, please follow all proper precautions, including wearing gloves when handling these prisms and thoroughly washing your hands afterward.

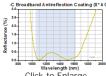
Click to Enlarge
Transmission data is for two 25
mm right-angle prisms contacted
into a cube. Click here for raw


This item will be retired without replacement when stock is depleted. If you require this part for line production, please contact our OEM Team.

Part Number	Description	Price	Availability	
PS705	Ge Right Angle Prism, Uncoated, 25 mm	\$180.28	Lead Time	

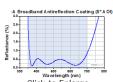
Hide N-BK7 Right-Angle Prisms, AR-Coated Hypotenuse


N-BK7 Right-Angle Prisms, AR-Coated Hypotenuse

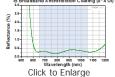

Choose an N-BK7 Right-Angle Prism with the appropriate AR Coating on the hypotenuse if you wish to use your prism as a retroreflector and you want to reduce surface reflections over the specified wavelength range of the coating.

wavelength range for optimum

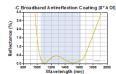
performance.


Click to Enlarge
Click Here for Raw Data
The blue shaded region indicates
the specified 1050 - 1620 nm
wavelength range for optimum
performance.

Part Number	Description	Price	Availability
PS910H-A	N-BK7 Right-Angle Prism, 10 mm, AR Coating on Hypotenuse: 350-700 nm	\$70.13	Today
PS910H-B	N-BK7 Right-Angle Prism, 10 mm, AR Coating on Hypotenuse: 650-1050 nm	\$70.13	Today
PS910H-C	N-BK7 Right-Angle Prism, 10 mm, AR Coating on Hypotenuse: 1050-1700 nm	\$70.13	Today
PS914H-A	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm, AR Coating on Hyp.: 350-700 nm	\$71.66	Today
PS914H-B	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm, AR Coating on Hyp.: 650-1050 nm	\$71.66	Today
PS914H-C	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm, AR Coating on Hyp.: 1050-1700 nm	\$71.66	3-5 Days
PS915H-A	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm, AR Coating on Hyp.: 350-700 nm	\$74.21	Today
PS915H-B	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm, AR Coating on Hyp.: 650-1050 nm	\$74.21	Today
PS915H-C	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm, AR Coating on Hyp.: 1050-1700 nm	\$74.21	Today
PS908H-A	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm, AR Coating on Hypotenuse: 350-700 nm	\$75.99	Today
PS908H-B	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm, AR Coating on Hypotenuse: 650-1050 nm	\$75.99	Today
PS908H-C	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm, AR Coating on Hypotenuse: 1050-1700 nm	\$75.99	Today

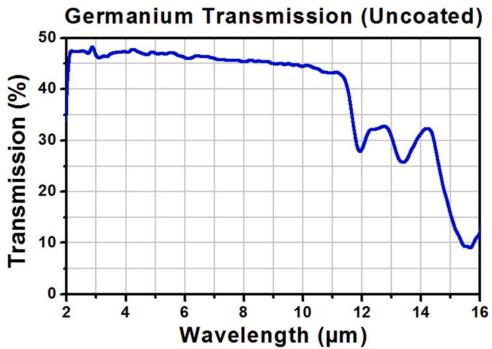

Hide N-BK7 Right-Angle Prisms, AR-Coated Legs

N-BK7 Right-Angle Prisms, AR-Coated Legs


Choose an N-BK7 Right-Angle Prism with the appropriate AR Coating on the legs if you wish to use your prism as a 90 degree reflector and you want to reduce surface reflections over the specified wavelength range of the coating.

Click to Enlarge Click Here for Raw Data The blue shaded region indicates the specified 350 - 700 nm wavelength range for optimum performance.

Click to Enlarge Click Here for Raw Data The blue shaded region indicates the specified 650 - 1050 nm wavelength range for optimum performance.



Click to Enlarge Click Here for Raw Data The blue shaded region indicates the specified 1050 - 1620 nm wavelength range for optimum performance.

Part Number	Description	Price	Availability
PS910L-A	N-BK7 Right-Angle Prism, 10 mm, AR Coating on Legs: 350-700 nm	\$83.39	Today
PS910L-B	N-BK7 Right-Angle Prism, 10 mm, AR Coating on Legs: 650-1050 nm	\$83.39	Today
PS910L-C	N-BK7 Right-Angle Prism, 10 mm, AR Coating on Legs: 1050-1700 nm	\$83.39	3-5 Days
PS914L-A	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm, AR Coating on Legs: 350-700 nm	\$85.17	Today
PS914L-B	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm, AR Coating on Legs: 650-1050 nm	\$85.17	Today
PS914L-C	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm, AR Coating on Legs: 1050-1700 nm	\$85.17	Today
PS915L-A	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm, AR Coating on Legs: 350-700 nm	\$87.72	Today
PS915L-B	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm, AR Coating on Legs: 650-1050 nm	\$87.72	Today
PS915L-C	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm, AR Coating on Legs: 1050-1700 nm	\$87.72	Today
PS908L-A	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm, AR Coating on Legs: 350-700 nm	\$89.51	Today
PS908L-B	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm, AR Coating on Legs: 650-1050 nm	\$89.51	Today

PS908L-C	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm, AR Coating on Legs: 1050-1700 nm	\$89.51	Today

