Optics

Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets

Multi-Element

Polarization Optics

Filters & Attenuators

Gas Cells

Ø = Lens Diameter

 $M = \frac{S}{S}$ Magnification or Conjugate Ratio

Spherical Lens Parameters

f = EFL (Effective Focal Length)

 $\frac{1}{f} = \frac{1}{S} + \frac{1}{S'}$ Paraxial Lens Formula (assumes sin $\theta \approx \theta$)

S = Object Distance, positive for objects to the left

of the front principal point P.

 S^\prime = Image Distance, positive for images to the right of the rear rear principal point P^\prime

Transmission of Various Materials

GLASS	DESCRIPTION	TRANSMISSION		
BK7	BK7 is a high-quality optical glass commonly used to make lenses intended for laboratory use. It has excellent mechanical and optical properties as well as good transmission in the visible and IR.	350nm to 2.0µm	BK7 TRANSMISSION 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included
UV Fused Silica	UV fused silica is an excellent material for the transmission of UV light. It is durable and has good mechanical properties $T_{external} \ge 80\%/cm @ 185nm$ $T_{internal} \ge 88\%/cm @ 185nm$	185nm to 2.1µm	UV Fused Silica Transmission UV Fus	1mm Thick Sample Surface Reflections Included
CaF ₂	Calcium fluoride provides great transmission from the UV to the IR. Synthetic CaF_2 is used to improve deep UV transmission and to increase the damage threshold.	180nm to 8.0μm	CaF ₂ Transmission 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included
MgF_2	Magnesium fluoride, an extremely rugged and durable material, is transparent over an extensive range of wavelengths from the UV to the IR.	200nm to 6.0µm	MgF ₂ Transmission 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included

Optics

Spherical Singlet Anti-Reflection Coatings

Most of our standard optics are available with high-performance, multilayer AR coatings, which minimize surface reflections within the specified wavelength ranges. These coatings are designed for angles of incidence between 0° and 30° (0.5 NA). For optics intended to be used at large

- R < 0.5% Average Over Band at 0° Incidence
- Less Angular Sensitivity within Angular Range
- Frequently Run Coatings are Listed Below

angles, consider using a custom coating optimized at a 45° of incidence; these coatings are effective from 25° to 52°. The plot shown below indicates the performance of the standard coatings in this family as a function of wavelength for a single surface. Broadband coatings have a typical absorption of 0.25% that is not shown in the reflectivity plots.

Normal Incidence Broadband Multilayer Anti-Reflective Coating

COATING CODE	WAVELENGTH RANGE	DESIGN ANGLE OF INCIDENCE	USEFUL ANGLE OF INCIDENCE		
-UV	290-370nm	0°	0 to 30°		
-A	350-650nm	0°	0 to 30°		
-B	650-1050nm	0°	0 to 30°		
-C	1050-1620nm	0°	0 to 30°		

Optics

UV Fused Silica: Plano-Concave & Bi-Concave Lenses

Plano-Concave lenses have a negative focal length and are typically used to diverge collimated beams of light in instruments like Galilean type beam expanders or Telescopes. The spherical aberration introduced into the electromagnetic wavefront by a plano-concave lens is negative and, as a result, it can be used to balance the positive spherical aberrations introduced by other lenses.

Specifications

- Material: UV Grade Fused Silica
- Wavelength Range: 185nm-2.1µm
- Uncoated Design Wavelength: 588nm,
- n = 1.460
- **Diameter Tolerance:** +0.00/-0.10mm
- **Focal Length Tolerance:** ±1%
- Scratch-Dig: 40-20
- **Centration:** ≤3arcmin
- **Clear Aperture:** >90% of Dia.
- Transmission: T_{internal} ≥ 88%/cm @ 185nm

Plano-Concave Lenses: UV Grade Fused Silica

Windows												
	SUGGESTED	fb	te1	t _c	R	PRICE					DIA	
Prisms	MOUNT ²	(mm)	(mm)	(mm)	(mm)	RMB	€	£	\$	(mm)	(mm)	ITEM #
		-11.4	3.1	2.0	-4.6	¥ 658.00	€ 64,10	£ 43.40	\$ 68.90	-10.0	6.0	LC4573
Gratings	LMRA8 & LMR05	-13.4	3.7	2.0	-5.5	¥ 671.40	€ 65,40	£ 44.30	\$ 70.30	-12.0	8.0	LC4291
		-21.4	4.5	2.0	-9.2	¥ 691.40	€ 67,30	£ 45.60	\$ 72.40	-20.0	12.7	LC4924
Polarization Optics	-	-27.1	4.9	3.0	-11.5	¥ 664.70	€ 64,70	£ 43.80	\$ 69.60	-25.0	12.7	LC4210
	-	-32.1	4.5	3.0	-13.8	¥ 663.70	€ 64,60	£ 43.80	\$ 69.50	-30.0	12.7	LC4796
Beamsplitters	LMR05	-52.4	4.4	3.5	-23.0	¥ 661.80	€ 64,40	£ 43.70	\$ 69.30	-50.0	12.7	LC4357
]	-77.4	4.1	3.5	-34.5	¥ 658.00	€ 64,10	£ 43.40	\$ 68.90	-75.0	12.7	LC4413
Filters] [-102.4	3.9	3.5	-46.0	¥ 658.00	€ 64,10	£ 43.40	\$ 68.90	-100.0	12.7	LC4232
& Attenuators		-202.7	4.2	4.0	-92.0	¥ 658.00	€ 64,10	£ 43.40	\$ 68.90	-200.0	12.7	LC4918
Gas Cells	LH1	-32.1	11.4	3.0	-13.8	¥ 738.20	€ 71,90	£ 48.70	\$ 77.30	-30.0	25.4	LC4252
	LMR1	-77.4	5.9	3.5	-34.5	¥ 725.80	€ 70,70	£ 47.90	\$ 76.00	-75.0	25.4	LC4513
		-102.4	5.3	3.5	-46.0	¥ 725.80	€ 70,70	£ 47.90	\$ 76.00	-100.0	25.4	LC4888
	LH1	-77.4	14.6	3.5	-34.5	¥ 2,474.40	€ 241,00	£ 163.20	\$ 259.10	-75.0	50.8	LC4425
		-102.7	11.6	4.0	-46.0	¥ 2,337.80	€ 227,70	£ 154.20	\$ 244.80	-100.0	50.8	LC4743
	LMR2	-152.7	8.8	4.0	-69.0	¥ 2,240.40	€ 218,20	£ 147.80	\$ 234.60	-150.0	50.8	LC4869
							•					

1 Edge Thickness given before 0.2mm @ 45° typ. Chamfer.

2) See the Lens Mount Section, Starting on Page 153.

Bi-Concave lenses have a negative focal length and are commonly used to increase the divergence of converging light.

Related Products See page 882

Lens Tissues/Forceps

ITEM#	\$	£	€	RMB	DESCRIPTION
MC-5	\$ 8.70	£ 5.50	€ 8,10	¥ 83.10	Lens Tissues, 5 Booklets
FCP	\$18.30	£11.50	€17,00	¥ 174.80	Forceps, Solid Stainless Steel

Bi-Concave Lenses: UV Grade Fused Silica

	DIA	f		R	t _c	te1	fb	SUGGESTED			
ITEM #	(mm)	(mm)	\$	£	€	RMB	(mm)	(mm)	(mm)	(mm)	MOUNT ²
LD4797	6.0	-6.0	\$ 83.60	£ 52.70	€ 77,70	¥ 798.40	-5.9	2.5	4.1	-6.8	LMRA6 &
LD4148	6.0	-12.0	\$ 68.10	£ 42.90	€ 63,30	¥ 650.40	-11.5	3.0	3.8	-13.0	LMR05
LD4271	9.0	-9.0	\$ 85.70	£ 54.00	€ 79,70	¥ 818.40	-8.7	2.5	5.0	-9.8	LMRA9 &
LD4014	9.0	-18.0	\$ 68.90	£ 43.40	€ 64,10	¥ 658.00	-17.0	3.0	4.2	-19.0	LMR05
LD4771	12.7	-15.0	\$ 84.70	£ 53.40	€ 78,80	¥ 808.90	-14.3	3.0	6.0	-16.0	
LD4650	12.7	-25.0	\$ 81.10	£ 51.10	€ 75,40	¥ 774.50	-23.5	3.0	4.8	-26.0	LMR05
LD4269	12.7	-30.0	\$ 80.60	£ 50.80	€ 75,00	¥ 769.70	-28.1	3.0	4.5	-31.0	
LD4511	12.7	-50.0	\$ 74.70	£ 47.10	€ 69,50	¥ 713.40	-46.5	3.0	3.9	-51.0	
LD4931	25.4	-25.0	\$104.00	£ 65.50	€ 96,70	¥ 993.20	-23.5	3.0	10.5	-26.0	
LD4293	25.4	-50.0	\$100.00	£ 63.00	€ 93,00	¥ 955.00	-46.6	3.5	7.0	-51.2	LMR1
LD4735	25.4	-75.0	\$ 85.20	£ 53.70	€ 79,20	¥ 813.70	-69.6	3.5	5.8	-76.2	
LD4103	25.4	-100.0	\$ 84.60	£ 53.30	€ 78,70	¥ 807.90	-92.6	3.5	5.3	-101.2	

Edge Thickness given before 0.2mm @ 45° typ. Chamfer.
See the Lens Mount Section, Starting on Page 153.

THORLAES

Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets Multi-Element

Cylindrical Lenses

& Lens Arrays