"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='5E0225701F5EF4AA89035CDB12D6C655';/* ]]> */
 
Unmounted Longpass Colored Glass Filters
FGL550S (2" x 2") FGL435 FGB67 (Ø25 mm) FGL610 FGK01 Please Wait
Features
These longpass colored glass filters are manufactured from different colors of Schott glass and are intended for use in a wide variety of applications. In addition to the longpass filters offered here, Thorlabs also offers a series of bandpass colored glass filters. In either case, the filters are available in both round and square varieties. The 25 mm round filters will fit into our manual or motorized filter wheels; alternatively, they can be mounted in a lens tube. A selection of Ø25 mm filters is available premounted. To mount the 2" x 2" square filters, choose from our selection of fixed filter holders. For the 6" x 6" filter, we recommend the FP02 Plate Holder. Several of the colored glasses used for our filters are fluorescent at certain wavelengths; for more details on how this may affect certain applications, contact Technical Support. For narrowband sources, we recommend our dielectric edgepass filters. Colored Glass Filter Kits Storage Boxes
Below are transmission plots (including surface reflections) as a function of wavelength for each of the colored glass filters presented on this page. Data was obtained for normal incidence. In each case, the shaded region indicates the range for which the transmission was >50% of the maximum transmission for that particular filter. To enlarge the plot, simply click on the plot. Thorlabs also offers bandpass colored filters. Click on Graphs to Enlarge:
Damage Threshold Data for Thorlabs' Longpass Colored Glass FiltersThe specifications to the right are measured data for Thorlabs' longpass colored glass filters. Damage threshold specifications are constant for all longpass colored glass filters, regardless of the center wavelength or shape of the filter.
Laser Induced Damage Threshold TutorialThe following is a general overview of how laser induced damage thresholds are measured and how the values may be utilized in determining the appropriateness of an optic for a given application. When choosing optics, it is important to understand the Laser Induced Damage Threshold (LIDT) of the optics being used. The LIDT for an optic greatly depends on the type of laser you are using. Continuous wave (CW) lasers typically cause damage from thermal effects (absorption either in the coating or in the substrate). Pulsed lasers, on the other hand, often strip electrons from the lattice structure of an optic before causing thermal damage. Note that the guideline presented here assumes room temperature operation and optics in new condition (i.e., within scratchdig spec, surface free of contamination, etc.). Because dust or other particles on the surface of an optic can cause damage at lower thresholds, we recommend keeping surfaces clean and free of debris. For more information on cleaning optics, please see our Optics Cleaning tutorial. Testing MethodThorlabs' LIDT testing is done in compliance with ISO/DIS11254 specifications. A standard 1on1 testing regime is performed to test the damage threshold. First, a lowpower/energy beam is directed to the optic under test. The optic is exposed in 10 locations to this laser beam for a set duration of time (CW) or number of pulses (pulse repetition frequency specified). After exposure, the optic is examined by a microscope (~100X magnification) for any visible damage. The number of locations that are damaged at a particular power/energy level is recorded. Next, the power/energy is either increased or decreased and the optic is exposed at 10 new locations. This process is repeated until damage is observed. The damage threshold is then assigned to be the highest power/energy that the optic can withstand without causing damage. A histogram such as that below represents the testing of one BB1E02 mirror. The photograph above is a protected aluminumcoated mirror after LIDT testing. In this particular test, it handled 0.43 J/cm^{2} (1064 nm, 10 ns pulse, 10 Hz, Ø1.000 mm) before damage.
According to the test, the damage threshold of the mirror was 2.00 J/cm^{2} (532 nm, 10 ns pulse, 10 Hz, Ø0.803 mm). Please keep in mind that these tests are performed on clean optics, as dirt and contamination can significantly lower the damage threshold of a component. While the test results are only representative of one coating run, Thorlabs specifies damage threshold values that account for coating variances. Continuous Wave and LongPulse LasersWhen an optic is damaged by a continuous wave (CW) laser, it is usually due to the melting of the surface as a result of absorbing the laser's energy or damage to the optical coating (antireflection) [1]. Pulsed lasers with pulse lengths longer than 1 µs can be treated as CW lasers for LIDT discussions. Additionally, when pulse lengths are between 1 ns and 1 µs, LIDT can occur either because of absorption or a dielectric breakdown (must check both CW and pulsed LIDT). Absorption is either due to an intrinsic property of the optic or due to surface irregularities; thus LIDT values are only valid for optics meeting or exceeding the surface quality specifications given by a manufacturer. While many optics can handle high power CW lasers, cemented (e.g., achromatic doublets) or highly absorptive (e.g., ND filters) optics tend to have lower CW damage thresholds. These lower thresholds are due to absorption or scattering in the cement or metal coating. Pulsed lasers with high pulse repetition frequencies (PRF) may behave similarly to CW beams. Unfortunately, this is highly dependent on factors such as absorption and thermal diffusivity, so there is no reliable method for determining when a high PRF laser will damage an optic due to thermal effects. For beams with a large PRF both the average and peak powers must be compared to the equivalent CW power. Additionally, for highly transparent materials, there is little to no drop in the LIDT with increasing PRF. In order to use the specified CW damage threshold of an optic, it is necessary to know the following:
The power density of your beam should be calculated in terms of W/cm. The graph to the right shows why the linear power density provides the best metric for long pulse and CW sources. Under these conditions, linear power density scales independently of spot size; one does not need to compute an adjusted LIDT to adjust for changes in spot size. This calculation assumes a uniform beam intensity profile. You must now consider hotspots in the beam or other nonuniform intensity profiles and roughly calculate a maximum power density. For reference, a Gaussian beam typically has a maximum power density that is twice that of the uniform beam (see lower right). Now compare the maximum power density to that which is specified as the LIDT for the optic. If the optic was tested at a wavelength other than your operating wavelength, the damage threshold must be scaled appropriately. A good rule of thumb is that the damage threshold has a linear relationship with wavelength such that as you move to shorter wavelengths, the damage threshold decreases (i.e., a LIDT of 10 W/cm at 1310 nm scales to 5 W/cm at 655 nm): While this rule of thumb provides a general trend, it is not a quantitative analysis of LIDT vs wavelength. In CW applications, for instance, damage scales more strongly with absorption in the coating and substrate, which does not necessarily scale well with wavelength. While the above procedure provides a good rule of thumb for LIDT values, please contact Tech Support if your wavelength is different from the specified LIDT wavelength. If your power density is less than the adjusted LIDT of the optic, then the optic should work for your application. Please note that we have a buffer built in between the specified damage thresholds online and the tests which we have done, which accommodates variation between batches. Upon request, we can provide individual test information and a testing certificate. The damage analysis will be carried out on a similar optic (customer's optic will not be damaged). Testing may result in additional costs or lead times. Contact Tech Support for more information. Pulsed LasersAs previously stated, pulsed lasers typically induce a different type of damage to the optic than CW lasers. Pulsed lasers often do not heat the optic enough to damage it; instead, pulsed lasers produce strong electric fields capable of inducing dielectric breakdown in the material. Unfortunately, it can be very difficult to compare the LIDT specification of an optic to your laser. There are multiple regimes in which a pulsed laser can damage an optic and this is based on the laser's pulse length. The highlighted columns in the table below outline the relevant pulse lengths for our specified LIDT values. Pulses shorter than 10^{9} s cannot be compared to our specified LIDT values with much reliability. In this ultrashortpulse regime various mechanics, such as multiphotonavalanche ionization, take over as the predominate damage mechanism [2]. In contrast, pulses between 10^{7} s and 10^{4} s may cause damage to an optic either because of dielectric breakdown or thermal effects. This means that both CW and pulsed damage thresholds must be compared to the laser beam to determine whether the optic is suitable for your application.
When comparing an LIDT specified for a pulsed laser to your laser, it is essential to know the following:
The energy density of your beam should be calculated in terms of J/cm^{2}. The graph to the right shows why the energy density provides the best metric for short pulse sources. Under these conditions, energy density scales independently of spot size, one does not need to compute an adjusted LIDT to adjust for changes in spot size. This calculation assumes a uniform beam intensity profile. You must now adjust this energy density to account for hotspots or other nonuniform intensity profiles and roughly calculate a maximum energy density. For reference a Gaussian beam typically has a maximum energy density that is twice that of the 1/e^{2} beam. Now compare the maximum energy density to that which is specified as the LIDT for the optic. If the optic was tested at a wavelength other than your operating wavelength, the damage threshold must be scaled appropriately [3]. A good rule of thumb is that the damage threshold has an inverse square root relationship with wavelength such that as you move to shorter wavelengths, the damage threshold decreases (i.e., a LIDT of 1 J/cm^{2} at 1064 nm scales to 0.7 J/cm^{2} at 532 nm): You now have a wavelengthadjusted energy density, which you will use in the following step. Beam diameter is also important to know when comparing damage thresholds. While the LIDT, when expressed in units of J/cm², scales independently of spot size; large beam sizes are more likely to illuminate a larger number of defects which can lead to greater variances in the LIDT [4]. For data presented here, a <1 mm beam size was used to measure the LIDT. For beams sizes greater than 5 mm, the LIDT (J/cm2) will not scale independently of beam diameter due to the larger size beam exposing more defects. The pulse length must now be compensated for. The longer the pulse duration, the more energy the optic can handle. For pulse widths between 1  100 ns, an approximation is as follows: Use this formula to calculate the Adjusted LIDT for an optic based on your pulse length. If your maximum energy density is less than this adjusted LIDT maximum energy density, then the optic should be suitable for your application. Keep in mind that this calculation is only used for pulses between 10^{9} s and 10^{7} s. For pulses between 10^{7} s and 10^{4} s, the CW LIDT must also be checked before deeming the optic appropriate for your application. Please note that we have a buffer built in between the specified damage thresholds online and the tests which we have done, which accommodates variation between batches. Upon request, we can provide individual test information and a testing certificate. Contact Tech Support for more information. [1] R. M. Wood, Optics and Laser Tech. 29, 517 (1997). In order to illustrate the process of determining whether a given laser system will damage an optic, a number of example calculations of laser induced damage threshold are given below. For assistance with performing similar calculations, we provide a spreadsheet calculator that can be downloaded by clicking the button to the right. To use the calculator, enter the specified LIDT value of the optic under consideration and the relevant parameters of your laser system in the green boxes. The spreadsheet will then calculate a linear power density for CW and pulsed systems, as well as an energy density value for pulsed systems. These values are used to calculate adjusted, scaled LIDT values for the optics based on accepted scaling laws. This calculator assumes a Gaussian beam profile, so a correction factor must be introduced for other beam shapes (uniform, etc.). The LIDT scaling laws are determined from empirical relationships; their accuracy is not guaranteed. Remember that absorption by optics or coatings can significantly reduce LIDT in some spectral regions. These LIDT values are not valid for ultrashort pulses less than one nanosecond in duration. A Gaussian beam profile has about twice the maximum intensity of a uniform beam profile. CW Laser Example However, the maximum power density of a Gaussian beam is about twice the maximum power density of a uniform beam, as shown in the graph to the right. Therefore, a more accurate determination of the maximum linear power density of the system is 1 W/cm. An AC127030C achromatic doublet lens has a specified CW LIDT of 350 W/cm, as tested at 1550 nm. CW damage threshold values typically scale directly with the wavelength of the laser source, so this yields an adjusted LIDT value: The adjusted LIDT value of 350 W/cm x (1319 nm / 1550 nm) = 298 W/cm is significantly higher than the calculated maximum linear power density of the laser system, so it would be safe to use this doublet lens for this application. Pulsed Nanosecond Laser Example: Scaling for Different Pulse Durations As described above, the maximum energy density of a Gaussian beam is about twice the average energy density. So, the maximum energy density of this beam is ~0.7 J/cm^{2}. The energy density of the beam can be compared to the LIDT values of 1 J/cm^{2} and 3.5 J/cm^{2} for a BB1E01 broadband dielectric mirror and an NB1K08 Nd:YAG laser line mirror, respectively. Both of these LIDT values, while measured at 355 nm, were determined with a 10 ns pulsed laser at 10 Hz. Therefore, an adjustment must be applied for the shorter pulse duration of the system under consideration. As described on the previous tab, LIDT values in the nanosecond pulse regime scale with the square root of the laser pulse duration: This adjustment factor results in LIDT values of 0.45 J/cm^{2} for the BB1E01 broadband mirror and 1.6 J/cm^{2} for the Nd:YAG laser line mirror, which are to be compared with the 0.7 J/cm^{2} maximum energy density of the beam. While the broadband mirror would likely be damaged by the laser, the more specialized laser line mirror is appropriate for use with this system. Pulsed Nanosecond Laser Example: Scaling for Different Wavelengths This scaling gives adjusted LIDT values of 0.08 J/cm^{2} for the reflective filter and 14 J/cm^{2} for the absorptive filter. In this case, the absorptive filter is the best choice in order to avoid optical damage. Pulsed Microsecond Laser Example If this relatively longpulse laser emits a Gaussian 12.7 mm diameter beam (1/e^{2}) at 980 nm, then the resulting output has a linear power density of 5.9 W/cm and an energy density of 1.2 x 10^{4} J/cm^{2} per pulse. This can be compared to the LIDT values for a WPQ10E980 polymer zeroorder quarterwave plate, which are 5 W/cm for CW radiation at 810 nm and 5 J/cm^{2} for a 10 ns pulse at 810 nm. As before, the CW LIDT of the optic scales linearly with the laser wavelength, resulting in an adjusted CW value of 6 W/cm at 980 nm. On the other hand, the pulsed LIDT scales with the square root of the laser wavelength and the square root of the pulse duration, resulting in an adjusted value of 55 J/cm^{2} for a 1 µs pulse at 980 nm. The pulsed LIDT of the optic is significantly greater than the energy density of the laser pulse, so individual pulses will not damage the wave plate. However, the large average linear power density of the laser system may cause thermal damage to the optic, much like a highpower CW beam.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light. Please click here for an Excel spreadsheet containing the raw transmission data.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light. Please click here for an Excel spreadsheet containing the raw transmission data.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light.
Transmission (including surface reflections) is plotted as a function of wavelength to the right. The region shaded in blue represents the range over which this filter is transmissive. At wavelengths shorter than the cuton wavelength, the filter blocks the light. Thorlabs offers two filter kits that bundle our most popular longpass and bandpass colored glass filters. The FGK01 Colored Glass Filter Kit contains three filters from our bandpass family and seven from our longpass family. The Ø25 mm filters are premounted in an SM1L03 lens tube that is engraved with the part number and bandpass region (for bandpass filters) or cuton wavelength (for longpass filters), and ship in a KT01 Storage Box with labeled slots to aid organization. The FGK01S Colored Glass Filter Kit contains the unmounted, square 2" x 2" counterparts to the filters in the FGK01. If you purchase individual filters and would like a safe, convenient place to store them when not in use, consider our KT01 and KT03 Storage Boxes. These are the same storage boxes that our prepackaged filter kits ship with. The KT01 is designed to hold up to ten mounted Ø25 mm filters, while the KT03 can hold up to ten unmounted 2" x 2" filters.  
