

56 Sparta Avenue • Newton, New Jersey 07860 (973) 300-3000 Sales • (973) 300-3600 Fax THORLARS

MAX606/M - November 27, 2018

Item # MAX606/M was discontinued on November 27, 2018. For informational purposes, this is a copy of the website content at that time and is valid only for the stated product.

6-AXIS NANOMAX™ NANOPOSITIONING FLEXURE STAGES

Hide Overview

OVERVIEW

Features

- 4 mm (0.16") of X, Y, and Z Travel
- 6° (105 mrad) of θx, θy, θz (Roll, Pitch, and Yaw) Travel
- · Common Pivot Point for All Rotational Degrees-of-Freedom Simplifies Alignment and Reduces Cross Talk
- · Parallel Flexure Design Ensures Smooth Continuous Motion and Long-Term Stability · Grooved Top Plate Ensures Alignment of Multi-Axis Stage Accessories
- · Piezo Options Provide up to 1 nm Resolution
- High Stiffness Elexure Design:
 - X and Z: 1 N/µm
 - Y: 0.5 N/µm
- High Resonant Frequency: >130 Hz (±10%)
- Monolithic, Single Moving Platform Design
- · All Adjusters Coupled to the Base to Minimize Crosstalk
- Modular Design for Interchanging Actuators
- · Low Maintenance Mechanism for Low Total Cost of Ownership

Thorlabs' 6-axis NanoMax™ Nanopositioning Flexure Stages are ideal for use in fiber launch systems or applications that require sub-micron resolution. Each unit provides 4 mm (0.16") of X, Y, and Z travel and 6° (105 mrad) of θx, θy, and θz travel with a maximum load capacity of 1 kg (2.2 lbs). Versions are available with or without preconfigured piezo actuators and differential or stepper motor actuators. The nominal deck height of the stage is 112.5 mm (4.43"), which matches that of our 112.5 mm tall 5-axis stage kits. Adapter plates are available for increasing the 62.5 mm deck height of our 3-axis and 4-axis flexure stages to 112.5 mm, enabling compatibility with our 6-axis stages.

The parallel flexure design ensures precise, smooth, continuous motions with negligible friction. For complex, multi-axis positioning, parallel flexure stages that incorporate three or more degrees of freedom into a single compact unit provide significantly improved performance over serialized stacks of translation stages. See the Design Features tab for more information.

A powerful tool for nanopositioning, our 6-axis NanoMax stages offer two innovative features: a common point of rotation and a patented design that allows all actuators to be coupled directly to the base to minimize any unwanted motion in the system.

Precision Drives

The modular design of our 6-axis NanoMax stages allows the drives to be removed and replaced at any · Pease see the Specs tab for Complete Specifications

time. For a list of all of our compatible drive options, please see the Drives tab. Pre-configured stages are offered that have differential micrometers or stepper motor actuators for out-of-the-box manual or motorized operation,

respectively. Versions are also available without drives in right- or left-handed configurations. All drives are coupled Click to Enlarge the Tip of a Removable Stainless Steel Probe Marks the Stage's Common Pivot Point for All Rotational Axes

Common Point of Rotation

Each 6-Axis NanoMax stage has a stainless steel probe in front of the moving platform, as shown in the photo to the left, indicating the common pivot point for all roational axes. Having a common pivot point for all rotational axes

Click to Enlarge In the Above Application, a 3-Axis NanoMax Flexure Stage is Aligned in Front of a 6-Axis Stage at the Proper 112.5 mm Deck Height Using an AMA554 Height Adapter

	Common Spe	cifications ^a			
Travel	X, Y, Z	4 mm (0.16")			
ITavei	θx, θy, θz	6° (105 mrad)			
Travel Mech	anism	Parallel Flexure			
Deck Height	(Nominal)	112.5 mm (4.43")			
Optical Axis (Nominal)	Height	125 mm (4.92")			
Load Capac	ity (Max)	1 kg (2.2 lbs)			
Crosstalk (M	/lax)	80 µm			
RMS Repeat	tability	30 nm over 30 µm 0.1% Over Full Travel Range			
Thermal Sta	bility	1 µm/°C			
Stiffness	X, Z	1 N/µm			
Junness	Y	0.5 N/µm			
Top Plate	Imperial Plate	0			
Mounting Holes	Metric Plate	0			

reduces alignment time of a system by eliminating need for compensating lateral movement when adjusting θ_X , θ_y , and θ_Z . If the moving platform is translated from its position, the pivot point also moves relative to the base, retaining its position relative to the moving platform. The nominal position of this point is in the mechanical drawing, which can be found by clicking on the blue info icon () in the table to the right. See the *Design Features* Tab for more information.

Click to Enlarge In this Fiber Coupling Application, a Laser Diode is Mounted in Front of a 6-Axis Stage Using an AMA029D Extension Platform

Piezo Options

The option for open- or closed-loop piezos allows these stages to achieve nanometer resolution. The piezoelectric actuators are built into the stage, have 30 µm of travel, and can be controlled using many of our open- or closed-loop piezo controllers (see the *Specs* tab for all compatible controllers). When these stages are coupled with a NanoTrak controller (BNT001/IR, MNA601/IR, or TNA001/IR), the system becomes a powerful auto-alignment solution that maintains optical throughput and eliminates coupling efficiency loss due to thermal drift or other external forces. These piezo stages include six PAA100 Drive Cables and, in the case of closed-loop systems, six PAA622 Feebabck Converter Cables.

Stages with open-loop piezo actuators do not have a strain gauge displacement sensor and are ideal for applications requiring positioning resolution down to 20 nm. Versions with closed-loop piezo actuators have internal strain gauge displacement sensors that provide a feedback voltage signal that is linearly proportional to the displacement of the piezoelectric element. This feedback signal increases the resolution to 5 nm and can be used to compensate for the hysteresis, creep, and thermal drift that is inherent in all piezoelectric elements, making these stages an excellent choice for applications requiring nanometer resolution.

Please note that the piezo mechanism uses contact with the micrometer drives in order to move the top platform. If for any reason the stage is operated with the micrometer drives removed, blanking plugs must be fitted before the piezo actuators can function. To order blanking plugs, please contact Tech Support.

Easy Alignment of Accessories

A wide range of accessories, shown below, is available to mount items such as microscope objectives, collimation packages, wave guides, fiber, and much more. These accessories can be easily aligned on the top platform of the 6-axis stage using a central keyway. This keyway in the top platform allows for rapid system reconfiguration while maintaining accessory alignment throughout the experiment.

· These items are not compatible with the 6-Axis NanoMax stage.

Hide Specs

SPECS												
				Stage Sp	ecificatio	ns						
Item #		MAX601D(/M)	MAX602D(/M)	MAX603D(/M)	MAX604(/M)	MAX605(/M)	MAX606(/M)	MAX607(/M) ^a	MAX608(/M) ^a	MAX609(/M) ^a		
Included Driv	/es	DRV3 E	Differential Micron	neter Drives	Legacy DI	RV001 Stepper	Motor Actuators		N/A			
Travel Range	X-Axis Y-Axis Z-Axis					4 mm ^b						
	θx, θy, θz					6° (105 mra	d)					
Deck Height (Nominal)			112.5 mm (4.43")									
Optical Axis (Nominal)	Height					125 mm (4.9	2")					
Load Capacit	y (Max)					1 kg (2.2 lbs	5)					
Crosstalk (Ma	ax) ^c		80 µm									
Thermal Stab	oility	1 µm/°C										
RMS Repeata	ability	30 nm over 30 μm 0.1% Over full travel range										
Stiffness	X-Axis Z-Axis	1 N/µm										
	Y-Axis					0.5 N/µm						
	Imperial					0						
Top Plate Dimensions	Metric					0						
Item #		MAX601D(/M)	MAX602D(/M)	MAX603D(/M)	MAX604(/M)	MAX605(/M)	MAX606(/M)	MAX607(/M) ^a	MAX608(/M) ^a	MAX609(/M) ^a		
Theoretical R	esolutior	with External	Drives									
X-Axis			1.5 µm		1.8 nm ^d							
Y-Axis			1.5 µm			1.8 nm ^d			N/A			
Z-Axis			1.0 µm		1.2 nm ^d				N/A			
θx, θy, θz			17 µrad			0.021 µrad	d					
Item #		MAX601D(/M)	MAX602D(/M)	MAX603D(/M)	MAX604(/M)	MAX605(/M)	MAX606(/M)	MAX607(/M) ^a	MAX608(/M) ^a	MAX609(/M) ^a		
Internal Piezo Specifi		ations										
Control			Open Loop	Closed Loop		Open Loop	Closed Loop		Open Loop	Closed Loop		
Drive Voltage	Range		0 -	- 75 V		0	- 75 V	0 - 75 V				
	X-Axis											

Travel	Y-Axis Z-Axis		3	30 µm			30 µm		3	30 µm					
Range	θx, θy, θz		1.8 arcmin (0.52 mrad)			1.8 arcmin (0.52 mrad)			1.8 arcmin (0.52 mrad)						
Capacitance			1	I.8 μF		1.8 µF			1.8 µF						
Theoretical Z-A: Resolution ^e		N/A	1	.0 nm	N/A	1.0 nm		N/A	1.0 nm						
	θx, θy, θz							0.0	18 µrad		0.018 µrad			0.018 µrad	
Compatible Piezo Controllers			BPC303 MDT693B MPZ601 KPZ101 MNA601/IR BNT001/IR	BPC303 MPZ601 KPZ101w/ TSG001 MNA601/IR BNT001/IR		BPC303 MDT693B MPZ601 KPZ101 MNA601//IR BNT001//IR	BPC303 MPZ601 KPZ101w/ TSG001 MNA601/IR BNT001/IR		BPC303 MDT693B MPZ601 KPZ101 MNA601/IR BNT001/IR	BPC303 MPZ601 KPZ101w/ TSG001 MNA601/IR BNT001/IR					

Left-Handed Versions are Available

• Please note that for the X- and Y-axes, 1 mm of micrometer travel will translate to 1.5 mm of stage travel due to the 1:1.5 gearing ratio. Other axes have a 1:1 ratio.

Also Known as Arcuate Motion

Using BSC201 Controller

Typical Values Using BPC30x Series Controllers and Based on 16-Bit DAC

Stepper Motor Specifications

Item #	DRV001 ^a			
Backlash	<7 µm			
Acceleration (Max)	4 mm/s ²			
Velocity Range	40 µm/s - 4 mm/s			
Voltage Stability	±0.04 mm/s			
Min Achievable Incremental Movement	60 nm			
Bidirectional Repeatability	500 nm			
Home Location Accuracy	±1.5 μm			
	X-Axis: 0.015°			
Pitch	Y-Axis: 0.015°			
	Z-Axis: 0.0047°			
	X-Axis: 0.0034°			
Yaw	Y-Axis: 0.0034°			
	Z-Axis: 0.0032°			
Limit Switches	Ceramic Tip Mechanical			
Manual Over Ride	Yes			
Compatible Stepper Motor Controllers	BSC203 MST602			

Resonant Frequencies

Resonant Frequency for Given Loads									
Axis	Mass (g)	Resonant Freq (Hz)							
	25	135							
х	55	132							
	110	128							
	25	122							
Y	55	119							
	110	114							
	25	118							
z	55	114							
	110	110							

This legacy item has been superseded by the DRV208.

Differential Micrometer Specifications								
Item #	DRV3							
Travel Range	8 mm (0.31") Coarse, 300 µm Fine							
Resolution	5.0 µm Coarse, 0.5 µm Fine							
Coarse Adjustment (with Vernier Scale)	500 µm/rev							
Fine Adjustment (with Vernier Scale)	50 µm/rev							

Hide Drives

DRIVES					
-	-	e drives to be removed and replaced at a the amount of automation or resolution r	•	Removing the Ac	Carster Carster
	ge. Then unscrew the knurled	etract the leadscrew of the actuator until knob attaching the existing drive to the s	0	Unscrew the Knob and Rem Actuato	ove the
in all cases the NanoMax 6-axis stag	ges have a travel range of 4 m ease see the full presentation	arized below. While some drives have long m in X, Y, and Z and 6° of roll, pitch, and for our Stepper Motor Drive, Differential	d yaw. For more	Click to Enlar Step 1 Rotate the Actu Counterclockwis Disengage the Ac from the Platfr	ator se to stuator
Item #	DRV004	DRV3	DR	V208	
Click Image to Enlarge	-5-4	- Same		5	

Actuator Type	Thumbscrew	Differential Micrometer ^a	Stepper Motor ^b	Piezoelectric with Feedback
Travel Range	8 mm (0.31") ^c	Coarse: 8 mm (0.31") ^c Fine: 300 µm	8 mm (0.31") ^c	20 µm
Adjustment	500 µm/revolution	Coarse: 500 µm/revolution Fine: 50 µm/revolution		-
Resolution	1.0 µm	Coarse: 5.0 μm Fine: 0.5 μm	3.2 µm/step 200 steps/rev of Leadscrew	5 nm ^d
Compatible Controllers		-	Benchtop: BSC200 Series Rack Module: MST602	Benchtop: BPC300 Series Rack Mount: MPZ601 K- and T-Cubes: KPZ101 with TSG001

Included with MAX601D(/M), MAX602D(/M), and MAX603D(/M) Stages

• The legacy DRV001 is included with the MAX604(/M), MAX605(/M), and MAX606(/M) stepper-motor-actuated stages

Range Limited to 4 mm (0.16") by the NanoMax Stage

Closed Loop

Hide Pin Diagrams PIN DIAGRAMS Piezo Drive Input **Displacement Sensor** Pin Designation SMC Male 7-Pin LEMO Male 1 +1MXx602D(/M), MAX603D(/M), MAX605(/M), MAX606(/M), MAX608(L)(/M), MAX609(L)(/M) MAX603D(/M), MAX606(/M), MAX609(L)(/M) 2 Oscillator + 3 0 V 4 Signal Out -Signal Out + 5 -15 V 6 Travel Nominal Maximum Input Voltage: 75 V Absolute Maximum Input Voltage: 100 V Pin Pin Description Description **DRV001 Stepper Motor Connector Pins** Limit Switch Ground Motor Phase A-1 6 D-Type Male Motor Phase A+ 2 Not Connected 7 MAX604(/M), MAX605(/M), MAX606(/M) 3 CW Limit Switch 8 to Reserved for Future 14 Use 4 Motor Phase B-15 Earth GND 5 Motor Phase B+ 0 0 0 05 10 60 0 0 0 010 110 0 0 0 015

Hide Design Features

DESIGN FEATURES

6-Axis NanoMax Design Features

Patented Parallel Flexure Design

Parallel Flexure Platforms

For complex, multi-axis positioning, parallel flexure platforms, see Figure 1, that incorporate three or more degrees of freedom into a single compact unit provide significantly improved performance over serialized stacks of translation stages. Thorabs' patented parallel flexure technology lies at the heart of the NanoMax[™] family of nanopositioning platforms. The starting point for the conceptual design is the observation that the motion of a rigid body has six unique degrees of freedom. Each actuator should subtract one degree of freedom from the body, so that the body is fully constrained with six actuators.

Click to Enlarge Figure 1: Simplified Parallel Flexure Schematic

The parallel flexure design of the moving platform provides an unmatched combination of high stability and resolution in a six-axis nanopositioner. The mechanical stiffness is an order of magnitude higher than traditional serial flexure designs. In addition to those already mentioned, there are several other intrinsic advantages of the parallel flexure design: a much lower working height compared to stacked axis stages, additional resistance to external forces, and significant improvements to damping capabilities. Also, since there are fewer moving parts, there is a reduction in the inertia of the moving platform. This leads to excellent dynamic performance, making this product ideal for fast automated alignments.

This design also solves the problem of error buildup commonly seen in stacked (serial) designs as discussed below.

It is important to note that parallel flexures, like serial flexures, exhibit crosstalk or arcuate motion. As a stage is moved to either side of its central position, transverse arcuate displacements of approximately 20 µm per millimeter of travel occur. If several axes are moved at once, the combined effect can be greater; however, unlike the random positioning errors found in traditional stages, this crosstalk is highly predictable and hence can be corrected via small adjustments. Although these arcuate displacements are sometimes a concern, they rarely hinder the alignment of fibers or other optical components since optical beams rarely propagate collinearly with the axes of any stage to better than the scale of the arcuate motion. Furthermore, when using a NanoTrak™ Auto-Alignment Controller, these effects are automatically compensated for by the controller itself. However, if arcuate motion is a limiting parameter of a particular alignment or positioning application, its effects can also be compensated for with software.

Traditional, Stacked (Serial) Multi-Axis Platforms

Multi-axis systems are traditionally built by stacking together a series of single axis mechanisms, as shown in Figure 2. As the number of axes increases, the design grows in complexity and becomes cumbersome. In addition, stacking drives reduces stiffness and can introduce a host of positioning errors.

All traditional designs of multi-axis stages (e.g., roller bearings, ball bearings, or flexures) suffer from the buildup of errors as stages are stacked. For a simple stacking of two stages, two main errors must be considered: cosine and Abbe. The cosine error arises when the axes of two stages are not aligned orthogonally to each other. The Abbe error arises from the finite height of the upper stage. Any angular roll, pitch, or yaw errors in the lower stage will be amplified by the overall height of the stacked system. The situation is particularly pronounced for a six-axis stage.

Figure 2: Simplified Stacked (Serial) Flexure Schematic

where the mechanism providing the sixth degree of freedom is stacked atop five other stages. All of the errors in the preceding stages combine to make the overall volumetric accuracy of the complete stack far worse than the errors associated with any individual stage.

A parallel platform design solves the problem of error buildup. The design intent was to conceive the flexure as a rigid rod that has a flexible coupling at each end, leading to exactly two rotational degrees of freedom. This rod structure constrains the motion of the top plate by connecting it to the base. Six such rods provide the six independent constraints needed to restrain the stage, neither over- nor under-constraining it.

To actuate movement in the top plate, the ends of the flexure rods not attached to the top plate are connected to linear actuators. Linear translation occurs by moving the appropriate pairs of flexure rods in the same direction, whereas rotation occurs by moving the appropriate pairs of rods in opposite directions.

Reduced Part Count, Low Maintenance, and Long Lifetime

To transmit motion accurately, it has been shown that it is preferable to have as few moving parts acting in series as possible. At each interface between parts, microscopic imperfections can exist which will create friction between the parts. Such friction tends to be unpredictable and uncontrollable, making it the most undesirable element of any high-performance design. Parallel flexure platforms have very few moving parts and can transmit motion very precisely. Tests performed over 30 µm in 1 µm steps have yielded a root-mean-square bidirectional repeatability of 30 nm, or 0.1% of full range for the 6-axis NanoMax stages. These results are made possible by the inherently superior performance of the parallel flexure mechanism that eliminates static and kinematic friction within the platform.

During operation, 6-axis NanoMax platforms do not suffer appreciably from wear and tear due to the minimal number of moving parts. Since there are no bearings in the moving parts, there is no degradation of positioning performance with time. This also reduces the maintenance costs since the only parts that may require servicing are the drive actuators. Moreover, setups do not need to be completely disturbed for stage maintenance. Drives can be very easily and quickly swapped, minimizing system down time and inconvenience. However, when the actuator is removed the platform will move from its position.

Common Pivot Point for All Rotation Axes

Click to Enlarge Figure 3: The tip of a removable stainless steel probe marks the stage's common pivot point for all rotational axes. Click here to see the mechanical drawing indicating the common pivot point.

Figure 4: The stainless steel probe can be removed at any time by loosening the knurled knob on the front of the stage A unique mechanical feature of the 6-Axis Nanomax stages is the addition of a single common pivot point, shown in Figure 3, for all three of the rotation axes (θx , θy , θz) to simplify any alignment challenge. In practical terms, this means that the need to compensate lateral movement is nearly eliminated when making rotational adjustments to any axis. For complex alignments of planar optical devices this can vastly reduce the time required for optimizing a system.

Usually a fiber holder is attached so that the tip of the fiber is held at the common rotation point with all of the attached adjusters at the middle of their translation range. For instructions on positioning the top plate

please see page 13 of the manual. If the moving platform is translated from its midpoint, the pivot point also moves relative to the base, retaining its position relative to the moving platform. Once the mounted accessories are aligned on the platform, the stainless steel probe can be removed by loosening the knob on the front of the unit, as shown in Figure 4.

Fixed, Modular, High-Resolution Actuators

Figure 5: 6-axis stage configured with various actuators. Please see the *Drives tab* for all options. shocks have little effect on the moving top plate. The modular design of our 6-axis NanoMax stages allows the drives to be removed and replaced at any

All actuators are connected directly to the base of the system rather than the moving top plate, thus minimizing unwanted motion within the system. Consequently, during manual operation, this allows operators to achieve a higher resolution with less skill. In motorized and automated applications, actuator vibration and

The modular design of our o-axis various stages allows the drives to be removed and replaced at any time. This allows for mix-and-match customization of actuators depending on the amount of automation or resolution needed on each axis.

Thorlabs offers a number of drive options including fine-thread thumbscrews, differential micrometers, motorized actuators, and piezo extenders. Figure 5 shows various drive options attached to different axes

This modularity allows the stage to be highly versatile for all applications. Versions are also available that have internal piezoelectric actuators giving 30 µm of travel with resolutions down to 1.0 nm, either open-loop or with strain gauge position feedback (closed loop). For increased performance and stability, the drive voltages are also controlled by built-in circuitry to compensate for thermal variations.

For all of our compatible drive options, please see the Drives tab. Pre-configured stages are also offered that have differential micrometers or stepper motor actuators for out-of-the-box manual or motorized operation, respectively.

Low Platform Height and Keyway Accessory Alignment

Thorlabs' 6-axis stages have a low platform height of 112.5 mm (4.43") for increased stability. This height also makes the 6-axis stage compatible with our 112.5 mm tall 5-axis stage kits. As shown in Figures 6 and 7, adapter plates are available for increasing the 62.5 mm deck height of our 3-axis and 4-axis flexure stages to 112.5 mm, enabling compatibility with our 6-axis stages.

Click to Enlarge Figure 6: In the Above Application, a 3-Axis NanoMax Flexure Stage is Aligned in Front of a 6-Axis Stage at the Proper 112.5 mm Deck Height Using an AMA554 Height Adapter

Click to Enlarge Figure 7: In the Above Application, a 3-Axis MicroBlock Compact Flexure Stage is Aligned in Front of a 6-Axis Stage at the Proper 112.5 mm Deck Height Using an AMA554 Height Adapter

A central keyway in the top platform allow for rapid system reconfiguration while maintaining accessory alignment. A wide range of accessories is available to mount items such as microscope objectives, collimation packages, wave guides, fiber, and much more.

Hide Multi-Axis Stages

MULTI-AXIS STAGES

Multi-Axis Stage Selection Guide

3-Axis Stages

Thorlabs offers three different 3-Axis Stage variations: NanoMax flexure stages, MicroBlock compact flexure stages, and RollerBlock long-travel stages. Each stage features a 62.5 mm nominal deck height. Our NanoMax line of 3-axis stages offers built-in closed- and open-loop piezos as well as modular drive options that include stepper motors, differential drives, or additional piezos. The MicroBlock stages are available with differential micrometer drives or fine thread thumbscrews; these drives are not removable. Finally, our RollerBlock stage drivers can be switched out for any actuator that has a Ø3/8" (9.5 mm) mounting barrel.

4- and 5-Axis Stages

Our 4- and 5-axis stages are ideal for the static positioning of waveguides or complex optical elements with respect to our 3-axis or 6-axis high-performance alignment stages. Thorlabs' 5-axis stages have nominal heights of 62.5 mm or 112.5 mm. The AMA554 Height Adapter can be used to raise the deck height of the 3-axis or 4-axis stages to 112.5 mm for compatibility with our 5-axis MicroBlock or 6-Axis NanoMax Stages. Click to Enlarge In the above application, a 3-Axis NanoMax flexure stage is aligned in front of a 6-axis stage at the proper 112.5 mm deck height using an AMA554 Height Adapter.

6-Axis Stages

Thorlabs' 6-Axis NanoMax Nanopositioners are ideal for complex, multi-axis positioning and have a nominal deck height of 112.5 mm. These stages offer a common point of rotation and a patented parallel flexure design that allows all actuators to be coupled directly to the base to minimize any unwanted motion in the system. Built-in closed- and open-loop piezo options are available. A selection of modular drive options allows any axis to be manual or motorized with the option for external piezos. Our units without included actuators are also available in right- or left-handed configurations. To increase the stage height of the 3-axis stages to 112.5 mm, we recommend our AMA554 Height Adapter, shown in the image to the right.

A complete selection and comparison of our multi-axis stages is available below.

3-Axis Stages

		0												
Item #	MAX313D MAX312D MAX311D MAX383 MAX381 MAX303 MAX302 MAX301 MBT					MBT602	MBT616D	RB13M	RBL13D					
Stage Type	NanoMax Flexure Stages MicroBlock Compact Flexure Stages											RollerBlock Long Travel Stages		
Included Drives	DRV3 Di	fferential Mic	rometers	DRV208 Motor A	Stepper ctuators	N/A			Fine Thread Thumbscrews	Differential Micrometers	148-801ST Micrometer Drives	DRV304 Differential Micrometers		
Built-in Piezos	N/A	Open Loop	Closed Loop	N/A	Closed Loop	N/A	Open Loop	Closed Loop	N/	A	N	N/A		
Travel (X, Y, Z)		4 mm (0.16")										13 mm (0.51")		
Deck Height (Nominal)						62.9	5 mm (2.46	5")						
Optical Axis Height (Nominal)						75	mm (2.95'	')						
Load Capacity (Max)		1 kg (2.2 lbs) 4.4 kg (9.7 lbs)										(9.7 lbs)		
Thermal Stability		1 µm/°C -										-		
Weight				1.00 kg (2.2	20 lbs)				0.64 kg (*	1.40 lbs)	0.59 kg	(1.30 lbs)		

4-Axis Stages MBT401D MBT402D MBT401D/M MBT402D/M Item # 4-Axis Thin-Profile MicroBlock Device Stage Stage Type 4-Axis Low-Profile MicroBlock Device Stage Differential Micrometers Included Drives Built-in Piezos N/A 13 mm (0.51") Horizontal Axis (Y)^a Vertical Axis (Z) 6 mm (0.24") Travel Pitch (0_v) ±5°

https://www.thorlabs.com/newgrouppage9_pf.cfm?guide=10&category_id=183&objectgroup_id=1100[11/27/2018 8:29:17 AM]

	Yaw (θ _z)	±5°	
Deck H	leight (Nominal)	62.5 mm (2.46")	
Optical (Nomin	l Axis Height nal)	75 mm (2.95")	
Load C	Capacity (Max)	0.5 kg (1.1 lbs)	1

• Perpendicular to the Optical Axis (X)

	5-Axis Stages										
Item #		MBT401D (MBT401D/M) or MBT402D (MBT402D/M) with MBT501	PY005								
Stage Ty	уре	5-Axis MicroBlock Stage System	Compact 5-Axis Stage								
Included	d Drives	Differential Micrometers	100 TPI Actuators								
Built-in	Piezos	N/A									
	Optical Axis (X)	13 mm (0.51")	3 mm (0.12")								
	Horizontal Axis (Y)	13 mm (0.51")	3 mm (0.12")								
Travel	Vertical Axis (Z)	6 mm (0.24")	3 mm (0.12")								
	Pitch (θ _y)	±5°	±3.5°								
	Yaw (θ _z)	±5°	±5°								
Deck He	eight (Nominal)	112.5 mm (4.43")	62.5 mm (2.46") ^a								
Optical Axis Height (Nominal)		125 mm (4.92")	75 mm (2.95") ^a								
Load Ca	apacity (Max)	0.5 kg (1.1 lbs)	0.23 kg (0.5 lbs)								

Nominal deck height of 62.5 mm and optical axis height of 75 mm can only be achieved using the PY005A2 Height Adapter and MMP1 Mounting Plate.

				6	-Axis Sta	ages							
								MAX607 MAX607/M	MAX608 MAX608/M	MAX609 MAX609/M			
Item #		MAX601D MAX601D/M	MAX602D MAX602D/M	MAX603D MAX603D/M	MAX604 MAX604/M	MAX605 MAX605/M	MAX606 MAX606/M	MAX607L ^a MAX607L/M ^a	MAX608L ^a MAX608L/M ^a	MAX609L ^a MAX609L/M ^a			
Stage Typ	e		6-Axis NanoMax Flexure Stage										
Included Drives		DRV3 D	Differential Micr	ometers	Legacy [Legacy DRV001 Stepper Motor N Actuators ^b			N/A				
Built-in Pi	ezos	N/A	Open Loop	Closed Loop	N/A	Open Loop	Closed Loop	N/A	Open Loop	Closed Loop			
Travel	X, Y, Z		4 mm (0.16")										
Traver	$\boldsymbol{\theta}_{x},\boldsymbol{\theta}_{y},\boldsymbol{\theta}_{z}$					6°							
Deck Heig	ht (Nominal)	112.5 mm (4.43")											
Optical Axis Height (Nominal)		125 mm (4.92")											
Load Cap	acity (Max)		1.0 kg (2.2 lbs)										
• Lef	-Handed Versi	on											

Left-Handed Version

· This legacy item has been superseded by the DRV208 actuator.

Hide 6-Axis NanoMax Stage with Differential Adjusters

6-Axis NanoMax Stage with Differential Adjusters

- Preconfigured with DRV3 Differential Micrometers for Manual Adjustments
- Available With or Without Internal Closed- or Open-Loop Piezos
 Optional Piezo Actuators Offer 30 µm
- of Travel
 Modular Design Allows Drives to be
- Removed and Replaced
- All Adjusters Coupled to the Base to Minimize Crosstalk
- PAA622 Piezo Feedback Cables are Included with the MAX603D(/M) Stage

Thorlabs' 6-Axis NanoMax stages with Differential Adjusters provide 4 mm (0.16") of coarse X, Y, and Z travel with 300 µm of fine travel. They also provide 6° (105 mrad) of θ x, θ y, and θ z (Roll, Pitch, and Yaw) Travel with 18 arcmin (5.2 mrad) of fine travel. The coarse adjuster has a Vernier scale with 10 µm graduations for a resolution of 5 µm. The fine adjuster has a Vernier scale with 1 µm graduations allowing for a resolution of 0.5 µm. This resolution and travel range make these stages ideal for optimizing the coupling efficiency in a fiber alignment or waveguide positioning system. The graduations also allow for a clear reference point for absolute positioning within a system. Please note that for the X- and Y-axis 1 mm of micrometer travel will translate to 1.5 mm of stage travel. Please see page 10 of the manual for more information. The modular design of the included drives allows them to be replaced at any time; please see the *Drives*

Item # ^a		MAX601D(/M)	MAX602D(/M)	MAX603D(/M)		
Manual Drive Sp	ecifications					
Included Drives		DRV3 Differential Micrometer Drives				
X-Axis Y-Axis Travel Range Z-Axis		Coarse ^b : 4 mm (0.16") Fine: 300 μm				
	θx, θy, θz	Coarse: 6° (105 mrad) Fine: 18 arcmin (5.2 mrad)				
Coarse Adjustment ^c (with Vernier Scale)		500 µm/rev				
Fine Adjustment ^c (with Vernier Scale)		50 µm/rev				
Piezo Specificat	ions					
Control			Open Loop	Closed Loop		
Drive Voltage Range			0 - 1	- 75 V		
Travel Range	X-Axis Y-Axis Z-Axis	N/A	30 µm			
	θx, θy, θz	N/A	1.8 arcmin (0.52 mrad)			
Theoretical Resolution ^d	X-Axis Y-Axis Z-Axis		1.0 nm			
	θx, θy, θz		0.018	µrad		

tab for more details and our full selection of compatible actuators.

In addition to the features above, the MAX602D(/M) and

MAX603D(/M) NanoMax Stages incorporate open- and closed-loop piezoelectric actuators, respectively, with 30 µm of travel. The openloop design does not contain an internal strain gauge sensor. The theoretical resolution of the piezo actuators is 1.0 nm for the X-. Y-. and Z-axis and 0.018 urad for the 0x, 0y, and 0z rotational axes. This

- Please see the Specs Tab for Complete Specifications
- · Full coarse travel range of the DRV3 Differential Actuator is 8 mm (0.31"). This
 - range is limited to 4 mm (0.16") or 6° (105 mrad) by the stage.
- · Please note that for the X- and Y-axis, 1 mm of micrometer travel will translate to 1.5 mm of stage travel due to the 1:1.5 gearing ratio. Other axes have a 1:1 ratio.
- · Typical Values Using BPC30x Series Controllers and Based on 16-Bit DAC

feedback loop created when using our closed loop system is ideal for compensating for the hysteresis, creep, and thermal drift that is inherent to all piezoelectric elements. These piezo stages include six PAA100 Drive Cables and, in the case of closed-loop systems, six PAA622 Feebabck Converter Cables

Part Number	Description	Price	Availability
MAX601D/M	6-Axis NanoMax Stage, Differential Drives, No Piezos, Right-Handed, Metric	\$6,181.20	Today
MAX602D/M	6-Axis NanoMax Stage, Differential Drives, Open-Loop Piezos, Right-Handed, Metric	\$10,225.50	Today
MAX603D/M	6-Axis NanoMax Stage, Differential Drives, Closed-Loop Piezos, Right-Handed, Metric	\$12,495.00	3-5 Days
MAX601D	6-Axis NanoMax Stage, Differential Drives, No Piezos, Right-Handed	\$6,181.20	Today
MAX602D	6-Axis NanoMax Stage, Differential Drives, Open-Loop Piezos, Right-Handed	\$10,225.50	Today
MAX603D	6-Axis NanoMax Stage, Differential Drives, Closed-Loop Piezos, Right-Handed	\$12,495.00	Today

Hide 6-Axis NanoMax Stage with Stepper Motor Actuators

6-Axis NanoMax Stage with Stepper Motor Actuators

Automated Alignments Available With or Without Internal Closed- or Open-Loop Piezos

Preconfigured with Legacy DRV001 Stepper Motor Actuators for

- Optional Piezo Actuators Offer 30 µm of Travel
- Modular Design Allows Drives to be Removed and Replaced
- All Adjusters Coupled to the Base to Minimize Crosstalk
- PAA622 Piezo Feedback Cables are Included with the MAX606(/M) Stage

Thorlabs' 6-Axis NanoMax Stages with stepper motor actuators provide 4 mm (0.16") of X, Y, and Z travel and 6° (105 mrad) of 0x, θy, θz (Roll, Pitch, and Yaw) travel. They are capable of 60 nm step increments with a bidirectional repeatability of 500 nm. Ceramic-tipped high-precision limit switches provide a high repeatability ideal for homing the motors. This is critical for auto alignment applications that rely on a highly repeatable zero point. The high repeatability and small step size make these stages ideal for any high-precision automated fiber launch system or general application. Each actuator also includes an adjuster knob for when manual adjustments are necessary. The modular design of the included drives allows them to be replaced at any time; please see the Drives tab for more details and our full selection of compatible actuators.

In addition to the features above, the MAX605(/M) and MAX606(/M) NanoMax Stages incorporate open- and closed-loop piezoelectric actuators, respectively, with 30 μm of travel. The open-loop design does not contain an internal strain gauge sensor. The theoretical resolution of the piezo actuators is 1.0 nm for the X-, Y-, and Z-axis and 0.018 μrad for the $\theta x,\,\theta y,$ and θz rotational axes. This feedback loop created when using our closed loop system is ideal for compensating for the hysteresis, creep, and thermal drift that is

Item # ^a		MAX604(/M)	MAX605(/M)	MAX606(/M)		
Stepper Moto	or Drive Spec	ifications				
Included Driv	ves	Legacy DRV001 ^b Stepper Motor Actuators				
Travel Range ^c	X-Axis Y-Axis Z-Axis	4 mm (0.16") ^d				
	θx, θy, θz	6° (105 mrad)				
Velocity Ran	ge	40.0 µm/s to 4 mm/s				
Max Acceleration		4 mm/s ²				
Compatible Drivers		BSC203 and MST602				
Piezo Specif	ications					
Control		- N/A -	Open Loop	Closed Loop		
Drive Voltage	e Range		0 - 75 V			
Travel Range	X-Axis Y-Axis Z-Axis		30 µm			
	θx, θy, θz		1.8 arcmin (0.52 mrad)			
Theoretical Resolution ^e	X-Axis Y-Axis Z-Axis		1.0	nm		
	θx, θy, θz		0.018	3 µrad		

- · Please see the Specs Tab for Complete Specifications
- · This legacy item has been superseded by the DRV208.
- · Please note that for the X- and Y-axis, 1 mm of micrometer travel will translate to 1.5 mm of stage travel due to the 1:1.5 gearing ratio. Other axes have a 1:1 ratio.
- Full travel range of the DRV001 Stepper Motors is 8 mm (0.31"). This range is limited to 4 mm (0.16") or 6° (105 mrad) by the stage.
- Typical Values Using BPC30x Series Controllers and Based on 16-Bit DAC

inherent to all piezoelectric elements. These piezo stages include six PAA100 Drive Cables and, in the case of closed-loop systems, six PAA622 Feebabck Converter Cables.

Part Number	Description	Price	Availability
MAX604/M	6-Axis NanoMax Stage, Stepper Motors, No Piezos, Right-Handed, Metric	\$7,578.60	Lead Time
MAX605/M	6-Axis NanoMax Stage, Stepper Motors, Open-Loop Piezos, Right-Handed, Metric	\$11,220.00	Lead Time
MAX606/M	6-Axis NanoMax Stage, Stepper Motors, Closed-Loop Piezos, Right-Handed, Metric	\$13,948.50	Lead Time
MAX604	6-Axis NanoMax Stage, Stepper Motors, No Piezos, Right-Handed	\$7,578.60	Today
MAX605	6-Axis NanoMax Stage, Stepper Motors, Open-Loop Piezos, Right-Handed	\$11,220.00	Today
MAX606	6-Axis NanoMax Stage, Stepper Motors, Closed-Loop Piezos, Right-Handed	\$13,948.50	Lead Time

Hide 6-Axis NanoMax Stage Without Preinstalled Actuators

6-Axis NanoMax Stage Without Preinstalled Actua	ators				
 No Preinstalled Actuators Available With or Without Internal Closed- or Open-Loop Piezos 	ltem # ^a		MAX607(/M) MAX607L(/M)	MAX608(/M) MAX608L(/M)	MAX609(/M) MAX609L(/M)
Optional Piezo Actuators Offer 30 um of Travel	Piezo Specif Control	ications		Open Loop	Closed Loop
Modular Design Allows Drives to	Drive Voltage	e Range		0 - 7	· · · ·
be Removed and Replaced (See <i>Drives</i> Tab for Details)	Travel	X-Axis Y-Axis		30	μm

All Adjusters Coupled to the Base to Minimize Crosstalk	Range	Z-Axis θx, θy, θz	N/A
PAA622 Piezo Feedback Cables are Included with the MAX609(L)(/M) Stage	Theoretical Resolution ^d	X-Axis Y-Axis	

MAX609(L)(*M*) Stage Thorlabs' 6-axis NanoMax stages, which are designed for those who wish to customize the installed actuators, are able to provide 4 mm (0.16") of X, Y, and Z travel

	0X, 0y, 02	1.6 archilli (0.52 fillau)
	X-Axis	
retical lution ^d	Y-Axis Z-Axis	1.0 nm
	θx, θy, θz	0.018 µrad
Dises		

1.8 arcmin (0.52 mrad)

Please see the Specs tab for complete specifications. See the Drives tab for all compatible drive options.

and 6° (105 mrad) of 0x, 0y, 0z

Click to Enlarge 6-Axis Stage configured with various actuators. Please see the *Drives tab* for all options.

(Roll, Pitch, and Yaw) travel when drives are installed. This allows each axis to be configured depending on the precision or automation needed. Whether the application is a multimode fiber launch system using thumbscrews or an automated alignment setup using stepper motor actuators, each axis can be configured to meet the demand. For a list of all compatible actuators, please

see the Drives tab.

In addition to the features above, item numbers starting with MAX608 or MAX609 incorporate open- and closed-loop piezoelectric actuators, respectively, with 30 µm of travel. The open-loop design does not contain an internal strain gauge sensor. The theoretical resolution of the piezo actuators is 1.0 nm for the X-, Y-, and Z-axis and 0.018 µrad for the 0x, 0y, and 0z rotational axes. This feedback loop created when using our closed loop system is ideal for compensating for the hysteresis, creep, and thermal drift that is inherent to all piezoelectric elements. These piezo stages include six PAA100 Drive Cables and, in the case of closed-loop systems, six PAA622 Feebabck Converter Cables.

Part Number	Description	Price	Availability
MAX607/M	6-Axis NanoMax Stage, No Piezos, Right-Handed, Metric	\$4,328.88	Lead Time
MAX607L/M	6-Axis NanoMax Stage, No Piezos, Left-Handed, Metric	\$4,328.88	Lead Time
MAX608/M	6-Axis NanoMax Stage, Open-Loop Piezos, Right-Handed, Metric	\$8,486.40	3-5 Days
MAX608L/M	6-Axis NanoMax Stage, Open-Loop Piezos, Left-Handed, Metric	\$8,486.40	Lead Time
MAX609/M	6-Axis NanoMax Stage, Closed-Loop Piezos, Right-Handed, Metric	\$10,837.50	Lead Time
MAX609L/M	6-Axis NanoMax Stage, Closed-Loop Piezos, Left-Handed, Metric	\$10,837.50	Lead Time
MAX607	6-Axis NanoMax Stage, No Piezos, Right-Handed	\$4,328.88	Lead Time
MAX607L	6-Axis NanoMax Stage, No Piezos, Left-Handed	\$4,328.88	3-5 Days
MAX608	6-Axis NanoMax Stage, Open-Loop Piezos, Right-Handed	\$8,486.40	Lead Time
MAX608L	6-Axis NanoMax Stage, Open-Loop Piezos, Left-Handed	\$8,486.40	Lead Time
MAX609	6-Axis NanoMax Stage, Closed-Loop Piezos, Right-Handed	\$10,837.50	Lead Time
MAX609L	6-Axis NanoMax Stage, Closed-Loop Piezos, Left-Handed	\$10,837.50	Lead Time