

Motion Control

Kinesis with C#

Quick Start Guide

Thorlabs Motion Control – Kinesis with C#

Table of Contents

Chapter 1 Scope... 1
Chapter 2 Getting Started ... 2

 Downloading Kinesis .. 2
 Kinesis Software .. 3
 DLL Files - “Which do I use and how do I make use of them?” .. 4
 Device Specific DLLs .. 4
 Native C DLLs and .NET Assemblies – what is the difference and should I care? 5
 Generic DLLs ... 5
 Where can I find a list of functions and properties? .. 6

Chapter 3 Visual Studio ... 8
 Key Features .. 8
 Windows Workloads .. 8
 Inserting Line Numbers ... 9
 Changing your Project File Location ... 10

Chapter 4 Examples ... 11
 Example 1 - Connect, Home, Move and Disconnect ... 11
 Example 2 – Running a Kinesis Instrument Panel in Visual Studio .. 16

Glossary ... 23
Thorlabs Worldwide Contacts ... 24

Thorlabs Motion Control – Kinesis with C# Scope

Rev. A, March 27, 2017 Page 1

Chapter 1 Scope
The purpose of this guide is to provide users with the ability to write simple programs in the C#
language to control Kinesis hardware within Microsoft Visual Studio on a Windows PC. This guide aims
to help programmers fast-forward their understanding of the Kinesis .NET API as well as assist
Foundation-level programmers get to grips with programming Kinesis-compatible Devices.

By the end of this guide, users should have gained the ability to connect and control Kinesis hardware
by calling methods stored in the Kinesis DLL component files included with Kinesis. Users will be able
to communicate with devices through coding a simple Console application and secondly be able to
create a simple WPF (Windows Presentation Foundation) User Interface which will load the Kinesis
Device Panel views.

NOTE: The examples contained in this guide focus around the use of KDC101 K-Cube DC Servo
Controller & compatible stages/actuators. The concepts outlined in this guide can be applied to other
Kinesis compatible hardware. Application code examples for other Kinesis compatible devices are
contained in the .NET API help file.

Thorlabs Motion Control – Kinesis with C# Getting Started

Page 2

Chapter 2 Getting Started

 Downloading Kinesis
The first step you will need to take is to download and install Kinesis, the Thorlabs Automated Motion
Control software package which can be used to control a wide range of Thorlabs hardware. Users of
Thorlabs Motion Control hardware may also be aware of APT software, an older version of Thorlabs
Motion Control software which Kinesis supersedes and shares similarities with.

Figure 1 – Kinesis software versions are available to download for free from www.thorlabs.com.

When downloading Kinesis, be sure to choose the version depending on the System Type of your PC.
You can check the System Type by searching System Information in the Windows Start menu.

NOTE: The examples within this guide make use of Kinesis 64-bit Software for 64-bit Windows
component assemblies (DLLs), which can be found through Windows Explorer in C:\Program
Files\Thorlabs\Kinesis after installation.

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=Motion_Control

Thorlabs Motion Control – Kinesis with C# Getting Started

Rev. A, March 27, 2017 Page 3

 Kinesis Software

Figure 2 – The Kinesis.exe GUI.

Figure 3 – Simplified Kinesis architecture.

Thorlabs Motion Control – Kinesis with C# Getting Started

Page 4

After you’ve installed Kinesis, you will find within your C: drive a range of files worth getting to know.
This includes:

• Thorlabs.MotionControl.Kinesis.exe – This is Kinesis. Simply click this executable to run the
software.

NOTE: Kinesis.exe contains an intuitive Sequencer - worth exploring for rapidly managing
Kinesis move/command sequences without having to write any code.

• Kinesis Simulator – You can run this utility alongside Kinesis to simulate connected hardware.

• Firmware Update utility – Users can keep their device firmware up-to-date with the latest
versions of Kinesis releases. The latest version of Kinesis can be downloaded from our website
here.

• .DLL (Assembly) files - A large list of .NET “Dynamically Linked Library” (.dll) files. These are
the building blocks of functionality used in the Kinesis Application and the important component
used in this guide.

• Help files – Including the .NET API Help file which contains the full list of functions and
properties, as well as code examples. An API is what’s known as an Application Programming
Interface, which in Lehman’s terms is the code exposed to customers to write their own
programs with Kinesis hardware, along with help and rules needed to write your program. The
.NET Framework is a Microsoft framework which provides several development frameworks
that you can use to build common application types.

 DLL Files - “Which do I use and how do I make use of them?”
A DLL is a dynamically linked library, and a type of assembly. A ‘DLL’ (or .dll) is a file which contains
chunks of code (functions and properties stored in classes) - the same code which has also been
compiled to create Kinesis.exe. This functionality can be accessed in your own program by storing
these assembly files within your Project folder. In Visual Studio you will also need to reference the .NET
type assemblies in your program as described in the examples contained within this guide.

 Device Specific DLLs
Not all assembly files will be needed for every Kinesis .NET program you write. Choosing which files to
make use of depends on the ‘Device’ you’re using as well as the type of ‘Visual Studio Project’ you wish
to write.

A Device is the USB compatible Thorlabs Electronics Controller (e.g. KDC101 - K-Cube DC Servo
Motor Controller), not the connected Stage/Actuator being driven.

After installing Kinesis, you’ll have access to the .NET API Help document (file path C:\Program
Files\Thorlabs\Kinesis\Thorlabs.MotionControl.DotNet_API). In this document, you will find a full list of
devices supported by Kinesis along with the assemblies each device interacts with. For each device
there are three device specific assemblies such as the following example list of .dlls for KDC101:

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=Motion_Control

Thorlabs Motion Control – Kinesis with C# Getting Started

Rev. A, March 27, 2017 Page 5

Name Purpose
…KCubeDCServo.UI.dll Provides access for users

wanting to embed the Kinesis
User Interface into their code.

…KCubeDCServo.CLI.dll Contains the core functionality
code of the device.

…KCubeDCServo.dll Lower level code accessed by
.CLI dll

Table 1 – KDC101 Device Specific .dll description

 Native C DLLs and .NET Assemblies – what is the difference and should I care?
In the .NET API help guide you will see some assemblies are .NET dlls and some are Native C dlls
which can be confusing. The important thing you will need to know when working through this guide is
what to do with each type. This is outlined in the following table:

Name DLL Type Purpose Things to do
…KCubeDCServo.UI.dll .NET dll Provides access for users

wanting to embed the Kinesis
User Interface into their code.

• Store in Project
Folder

• Add Reference
…KCubeDCServo.CLI.dll .NET dll Contains the core functionality

code of the device.
• Store in Project

Folder
• Add Reference

…KCubeDCServo.dll Native C dll Lower level code accessed by
the .CLI dll

Store in Project Folder
only.

Table 2 - KDC101 Device Specific .dll types and instructions.

 Generic DLLs

Generic assemblies follow an important pillar of object-oriented programming known as ‘Inheritance’,
which means a device can inherit behaviours from code stored in generic classes. This means our
Software Engineers can avoid duplicating large chunks of code where common behaviour exists
between types of devices which would otherwise make software such as Kinesis.exe take up more
memory on your PC.
Each specific .NET device assembly is built on and supported by a collection of generic assemblies –
assemblies containing code used by different types of Kinesis compatible devices.

e.g. Thorlabs.DeviceManager,DeviceManagerCLI is a generic assembly containing
Thorlabs.DeviceManager,DeviceManagerCLI.DeviceManagerCLI class which contains the
BuildDeviceList() function which will interact with all Kinesis compatible device types. This is further
described in figure 4 below.

The full collection of assemblies (DLLs) used by a device are also known as the device ‘Dependencies’.

NOTE: Assemblies are written in their ‘Namespace’ format. Namespaces are a hierarchical way of
organising groups of classes and are useful for managing access to code based on the type of devices
being used.

Thorlabs Motion Control – Kinesis with C# Getting Started

Page 6

e.g. Thorlabs.MotionControl.DeviceManagerCLI.DeviceManagerCLI.BuildDeviceList()

Namespace Thorlabs - Namespace for all Thorlabs software

MotionControl - Namespace for all Thorlabs Motion Control software

DeviceManagerCLI - Namespace providing access to the core
functionality of the device

Class DeviceManagerCLI – Class containing collection of static
functions required to manage multiple devices.

Function BuildDeviceList() - Builds an internal list of all
connected devices.

Figure 4 – Example Kinesis .DLL class hierarchy of BuildDeviceList().

In summary, you will generally do THREE things with the .dlls, each of which are covered in this guide.

1) Copy .dlls into your Project folder.
2) Reference the .NET type .dlls in your Visual Studio Project via Solution Explorer/
3) Allow calling of functions and assignment of properties by implementing ‘Using’ directives in

your script.

 Where can I find a list of functions and properties?
Functions and properties are defined and listed in the .NET API Help document ((C:\Program
Files\Thorlabs\Kinesis\Thorlabs.MotionControl.DotNet_API). Within the .NET API document, you can
click through the Namespaces to classes until you reach the list of functions and properties contained
within the class.

Figure 5- Access Public Types, Functions, Properties and Events from within the CLI .NET namespace and child

classes.

Thorlabs Motion Control – Kinesis with C# Getting Started

Rev. A, March 27, 2017 Page 7

Alternatively you can use ‘Index’ to search for specific methods and filter for the appropriate
namespace location based on the device you’re using.

Figure 6 – The .NET API help guide ‘Index’ is useful for searching for filtering functions and properties.

Thorlabs Motion Control – Kinesis with C# Visual Studio

Page 8

Chapter 3 Visual Studio

Visual Studio is an integrated development environment from Microsoft. It exists in different package
names which differ in functionality and cost. These are: Community, Professional, Enterprise and Code.
Visual Studio Community is free to download from the Microsoft Website and is the IDE used within this
guide.

NOTE: An IDE is an Integrated Development Environment. This is a software application used to create
software applications. This will typically contain a source code editor, build automation tools and a
debugger.

 Key Features

Figure 7 – Visual Studio Key Features.

 Windows Workloads
Once you’ve installed VS Community, you can install a range of Windows Workloads. Visual Studio can
take up a lot of memory so rather than giving you a huge single software package containing every
feature which you may not need, workloads allow users to pick and choose the functionality they
require. Workloads enable you to install packets of features required for various programming
languages, frameworks or platforms you wish to work with. These can be installed during initial
installation of Visual Studio. Alternatively from the Visual Studio Toolbar access Tools > Get Tools
and Features.

To build the applications in this guide, you will need to install the .NET desktop development
workload.

Access Tools > Get Tools and Features.in the Visual Studio toolbar

Thorlabs Motion Control – Kinesis with C# Visual Studio

Rev. A, March 27, 2017 Page 9

Tick the .NET desktop development workload.

Click Modify to install the workload.

Figure 8 – The .NET desktop development Workload is required to run these examples.

 Inserting Line Numbers
You can add ‘Line numbers’ to the Code Editor to keep track of Code Edits, and find sources of error
when Debugging your program.

Select Tools > Options.

Under Text Editor > All Languages > General select and tick Line Numbers.

Figure 9 – Add Line Numbers to your Program.cs legend.

Thorlabs Motion Control – Kinesis with C# Visual Studio

Page 10

 Changing your Project File Location
A Project is a folder which contains your program, along with the files needed to make your program
work. When you later get to the stage of performing a ‘Build’ of your program, you are instructing the
Visual Studio compiler to build an executable file, which contains code copied from your .cs file. This is
where you will have typed your C# code, which has been translated into machine code – ready to be
run. To do this, the Visual Studio compiler will sort through the Project folder and look for the files
needed to create the executable. If you run your program and errors are produced, ensuring that the
correct assembly files are located in your Project folder is the first thing to check.

The first thing you will do in Visual Studio is create a Project. This will produce a Program.cs file which
will appear in Solution Explorer, which you can type code into via the Code Editor window in Visual
Studio. By default you will find that your project is saved into a subset of folders which may be difficult
to find at a later stage.

To change your Project location from the Visual Studio Toolbar:

Access Tools > Options > Projects and Solutions > Locations (or General).

Select the Projects location button (highlighted).

Press Ctrl + N to create a New Folder.

We would recommend calling this ‘C#Programs’ as below.

Figure 10 – Change the Projects Folder Location.

Thorlabs Motion Control – Kinesis with C# Examples

Rev. A, March 27, 2017 Page 11

Chapter 4 Examples

 Example 1 - Connect, Home, Move and Disconnect
The following example will show users the simplest way to connect to, home, move the device and
safely disconnect communications with a KDC101 controller and connected stage/actuator. A KDC101
is a Thorlabs K-Cube DC Servo Controller which controls a range of DC servo motorised actuators and
stages. The K-Cube is a range of controller types which have a compact footprint and can be controlled
by the Kinesis software.

The following example is a Console Application, the simplest type of project in Visual Studio. Console
Applications run in the Console in Windows known as the Command Window.

NOTE: This example omits try/catch statements which are used in exception error handling.

1) Create the Console Application

Within Visual Studio toolbar choose File > New > Project… > Visual C# > Windows Desktop.

Create a Console App and name this KDC101Console.

NOTE: It is worth making a note of the Project ‘Location’. By default this file path is
‘C:\Users\.....\source\repos\’ which you may wish to change. See ‘Changing the Project Folder
Location’ in Section 3.4 for details.

Figure 11 – Create a Console App from with the New Project Window.

Thorlabs Motion Control – Kinesis with C# Examples

Page 12

2) Within Windows File Explorer, copy the Thorlabs .dll file you’re your Project Folder
(…KDC101Console\bin\Debug)

Highlight and press Ctrl + C to copy the .dll files you require (see DotNetAPI help file included
within the Kinesis software folder) or if you’re unsure, copy all Kinesis.dlls.

NOTE: The 64-bit .dlls are located in C:\Program Files\Thorlabs\Kinesis (32-bit .dlls are
located in C:\Program Files (x86)\Thorlabs\Kinesis).

Within your Project Folder, press Ctrl + P to paste the dlls in …bin\Debug.

Figure 12 – The Kinesis dlls have been copied into the Debug folder within the Project Folder.

3) Set the Project Platform Target

In Solution Explorer right-click KDC101Console > Properties.

Under Build select Platform target to match the .dlls. In our case this is x64.

Click File > Save All.

Thorlabs Motion Control – Kinesis with C# Examples

Rev. A, March 27, 2017 Page 13

Figure 13- The Platform Target is set as x64, matching the type property of the C++ dlls in the Kinesis Software folder.

4) Add References to your Project.

The .NET API holds a list of Dependencies (or component programs) needed to access the
functionality of a device.

In Solution Explorer right-click KDC101Console > Add > Reference

Click Browse… select the dlls below that were copied into your Project in Step 2).

• Thorlabs.MotionControl.DeviceManagerCLI
• Thorlabs.MotionControl.GenericMotorCLI
• Thorlabs.MotionControl.Tools.Common
• Thorlabs.MotionControl.Tools.Logging

Also add reference to the specific CLI assembly which applies to your device.

• Thorlabs.MotionControl.KCube.DCServoCLI (for KDC101)

5) Reference Namespaces in your MainWindow class.

Code using directives of the .dll namespaces you wish to access by inserting the following code
in at line 6. in Program.cs.

using System.Threading; //enables use of Thread.Sleep() “wait” method
using Thorlabs.MotionControl.DeviceManagerCLI;
using Thorlabs.MotionControl.GenericMotorCLI.Settings; //this will
specifically target only the commands contained within the .Settings sub-class
library in *.GenericMotorCLI.dll.
using Thorlabs.MotionControl.KCube.DCServoCLI;

NOTE: ‘Using’ directives allow access to types from within a namespace within your program, such that
you don’t have to continually qualify the use of a type from within the namespace in the body of your
program.

Thorlabs Motion Control – Kinesis with C# Examples

Page 14

6) Specify the device serial number

Copy the following code after “static void Main(string[] args) {”.

// We create the serial number string of your connected controller. This will
// be used as an argument for LoadMotorConfiguration(). You can replace this
// serial number with the number printed on your device.
string serialNo = "27000423";

NOTE: Assign the device serial number string matching your device e.g. 27000423.
The serial number is a unique number to identify every controller unit made and is typically printed on
your device hardware.

7) Enter the rest of the annotated code

Enter the following code below “string serialNo = "********";”.

// This instructs the DeviceManager to build and maintain the list of
// devices connected.
DeviceManagerCLI.BuildDeviceList();

// This creates an instance of KCubeDCServo class, passing in the Serial
Number parameter.
KCubeDCServo device = KCubeDCServo.CreateKCubeDCServo(serialNo);

// We tell the user that we are opening connection to the device.
Console.WriteLine("Opening device {0}", serialNo);

// This connects to the device.
device.Connect(serialNo);

// Wait for the device settings to initialize. We ask the device to
// throw an exception if this takes more than 5000ms (5s) to complete.
device.WaitForSettingsInitialized(5000);

// This calls LoadMotorConfiguration on the device to initialize the
DeviceUnitConverter object required for real world unit parameters.
MotorConfiguration motorSettings = device.LoadMotorConfiguration(serialNo,
DeviceConfiguration.DeviceSettingsUseOptionType.UseFileSettings);

// This starts polling the device at intervals of 250ms (0.25s).
device.StartPolling(250);

// We are now able to Enable the device otherwise any move is ignored. You
should see a physical response from your controller.
device.EnableDevice();
Console.WriteLine("Device Enabled");

// Needs a delay to give time for the device to be enabled.
Thread.Sleep(500);

// Home the stage/actuator.
Console.WriteLine("Actuator is Homing");
device.Home(60000);

Thorlabs Motion Control – Kinesis with C# Examples

Rev. A, March 27, 2017 Page 15

// Move the stage/actuator to 5mm (or degrees depending on the device
connected).
Console.WriteLine("Actuator is Moving");
device.MoveTo(5, 60000);

// Stop polling the device.
device.StopPolling();

// This shuts down the controller. This will use the Disconnect() function to
close communications & will then close the used library.
device.ShutDown();

// Click any key at the end of the program to exit.
Console.WriteLine("Process complete. Press any key to exit");
Console.ReadKey();

8) Save the Solution.

Click File > Save All

9) Build the Solution

Right-click your Project in Solution Explorer > click Build.

This will create KCubeDCServo.exe within your Project Folder.

10) Run the Program

Right-click your Project in Solution Explorer > Debug > click Start new instance.

Command Prompt

You can also run your console application from the command prompt.

1. Click the Windows Start Menu > type cmd to open Command Prompt.

2. In Command Prompt type
cd C:\C#Programs\KCubeDCServo\KCubeDCServo\bin\Debug\KCubeDCServo

3. Press Enter.

4. In Command Prompt type KCubeDCServo.exe > press enter to run the program.

Figure 14 – How to run your program from within the Command Prompt.

Thorlabs Motion Control – Kinesis with C# Examples

Page 16

 Example 2 – Running a Kinesis Instrument Panel in Visual Studio
This simple example will enable you to load an instance of a Kinesis device UI panel in a WPF
application within Visual Studio.

The .NET Framework provides several development frameworks that you can use to build common
application types. Windows Presentation Foundation (WPF) is a framework for building Desktop client
applications, which would have a Graphical User Interface (GUI). You will need to code the back-end of
this application in C# and the user interface in .xaml – a mark-up language which simplifies creating a
UI for a .NET Framework application.

The example below is based on loading a KDC101 DC Servo Controller connected to a MTS50-Z8
50mm linear stage.

Figure 15 – The KDC101 Kinesis GUI hosted in a WPF application.

1) Create the WPF Application

Within Visual Studio toolbar choose File > New > Project… > Visual C# > Windows Desktop

 Create New WPF Application.

Create a WPF App and name this WPFKcubeUI.

Thorlabs Motion Control – Kinesis with C# Examples

Rev. A, March 27, 2017 Page 17

Figure 16 - Create a WPF App from with the New Project Window.

2) Within Windows File Explorer, copy the Thorlabs .dll file into WPFKCubeUI\bin\Debug.

Highlight and press Ctrl + C to copy the .dll files you require (see DotNetAPI help file included
within the Kinesis software folder) or if you’re unsure, copy all Kinesis.dlls.

NOTE: The 64-bit .dlls are located in C:\Program Files\Thorlabs\Kinesis (32-bit .dlls are
located in C:\Program Files (x86)\Thorlabs\Kinesis).

Within your Project Folder, press Ctrl + P to paste the dlls in …bin\Debug.

Thorlabs Motion Control – Kinesis with C# Examples

Page 18

Figure 16 - The Kinesis dlls have been copied into the Debug folder within the Project Folder.

3) Set the Project Platform Target

In Solution Explorer right-click on WpfApp1 > Properties.

Under Build select Platform target to match the .dlls. In our case this is x64.

Click File > Save All.

Figure 17 - The Platform Target is set as x64, matching the type property of the C++ dlls in the Kinesis Software

folder.

4) Add References to your Project.

The .NET API holds a list of Dependencies (or component programs) needed to access the
functionality of a device.

Right-click WpfApp1 within Solution Explorer > Add > Reference

Click Browse… select the dlls below that were copied into your Project in Step 2).

Thorlabs Motion Control – Kinesis with C# Examples

Rev. A, March 27, 2017 Page 19

• Thorlabs.MotionControl.DeviceManagerCLI
• Thorlabs.MotionControl.DeviceManagerUI
• Thorlabs.MotionControl.GenericMotorCLI
• Thorlabs.MotionControl.GenericMotorUI
• Thorlabs.MotionControl.Tools.Common
• Thorlabs.MotionControl.Tools.Logging
• Thorlabs.MotionControl.Tools.WPF

Also add reference to the specific CLI and UI assemblies which apply to your device.

• Thorlabs.MotionControl.KCube.DCServoCLI*
• Thorlabs.MotionControl.KCube.DCServoUI*

*Applies to use of KDC101

5) Reference Namespaces in your MainWindow class.

MainWindow inherits functionality from System.Windows.Window, a class which provides the ability to
configure and control dialogue boxes and user interface windows. This class contains the code which
will interact with the Kinesis Instrument Panel which is designed in MainWindow.xaml.

In Solution Explorer, under MainWindow.xaml open MainWindow.xaml.cs class.

Figure 18 – Solution Explorer showing the location of MainWindow.xaml.cs within the WPF Project.

Thorlabs Motion Control – Kinesis with C# Examples

Page 20

Code using directives of the .dll namespaces you wish to access by inserting the following code
in at line 16 in MainWindow.xaml.cs

using Thorlabs.MotionControl.DeviceManagerCLI;
using Thorlabs.MotionControl.KCube.DCServoCLI;
using Thorlabs.MotionControl.KCube.DCServoUI;

NOTE: Depending on the device you’re connecting, will affect the using statements you’ve written.
These are a shortcut for accessing Classes, Functions and Properties within the Kinesis class libraries
as outlined within the Kinesis .NET API document.

6) Code in .XAML to design the appearance and functionality of the interface.

Open MainWindow.xaml > edit and type in the following code.

Title="MainWindow" Height="350" Width="750" Loaded="MainWindow_OnLoaded"
Closed="MainWindow_OnClosed">

 <Grid Margin="50,75,50,50">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <ContentControl Name="_contentControl" Margin="5" Grid.Row="1"/>
 </Grid>

</Window>

7) Create the MainWindow_OnLoaded event

Right-click "MainWindow_OnLoaded" on Line 8 in MainWindow.xaml.

Select Go To Definition.

This will create and register a MainWindow_OnLoaded event within MainWindow.xaml.cs.

NOTE: The code within this event will run when the UI window is generated.

8) Create the MainWindow_OnLoaded event

Repeat Step 7) for "MainWindow_OnClosed".

NOTE: The code within this event will run when the UI window is closed.

You are now ready to code the back end functionality of the device which is coded within the
MainWindow.xaml.cs class.

Thorlabs Motion Control – Kinesis with C# Examples

Rev. A, March 27, 2017 Page 21

9) Create Thorlabs.MotionControl.KCube.DCServoCLI.KCubeDCServo class reference

In MainWindow.xaml.cs type the following code beneath public MainWindow() {
InitializeComponent(); }.

 //The field _kCubeDCServo is an instance field of KCubeDCServo. This
builds an empty reference _kCubeDCServo.
 //This reference will later be assigned to create an instance of the
KCubeDCServo class object variable which we will interact
//within MainWindow_OnLoaded() & MainWindow_OnClosed()
 KCubeDCServo _kCubeDCServo = null;

_kCubeDCServo is a reference variable of the
Thorlabs.MotionControl.KCube.DCServoCLI.KCubeDCServo class.

In C# you can assign null to any reference variable such that it doesn’t yet refer to an object in memory.
An object, being the instance of this KCubeDCServo class, is later created and assigned to this
reference when the CreateKCubeDCServo() function is called.

The Private Access Modifier makes KCubeDCServo class functions and properties available to the
MainWindow.xaml.cs class and component events as shown below.

10) Code the Device Connection

Copy the following code into your MainWindow_OnLoaded() event ‘private void
MainWindow_OnLoaded(object sender, RoutedEventArgs e)’

{
// This instructs the DeviceManager to build and maintain the list of
// devices connected. We then print a list of device name strings called
// “devices” which contain the prefix “27”
DeviceManagerCLI.BuildDeviceList();
List<string> devices = DeviceManagerCLI.GetDeviceList(27);

// IF statement – if the number of devices connected is zero, the Window
// will display “No Devices”.
if (devices.Count == 0)
{
 MessageBox.Show("No Devices");
 return;
}
// Selects the first device serial number from “devices” list.
string serialNo = devices[0];

// Creates the device. We assign an instance of the device to _kCubeDCServo
KCubeDCServo _kCubeDCServo = KCubeDCServo.CreateKCubeDCServo(serialNo);

// Connect to the device & wait for initialisation. This is contained in a
// Try/Catch Error Handling Statement.
try
{
 _kCubeDCServo.Connect(serialNo);

Thorlabs Motion Control – Kinesis with C# Examples

Page 22

// wait for settings to be initialized
 _kCubeDCServo.WaitForSettingsInitialized(5000);
}
catch (DeviceException ex)
{
 MessageBox.Show(ex.Message);
 return;
}
// Create the Kinesis Panel View for KDC101
_contentControl.Content = KCubeDCServoUI.CreateLargeView(_kCubeDCServo);
}

11) Code Device Disconnection

Copy the following code into your MainWindow_Closed() method private void
MainWindow_Closed(object sender, RoutedEventArgs e)

// Disconnect device after closing the Window.
if ((_kCubeDCServo != null) && _kCubeDCServo.IsConnected)
{
 _kCubeDCServo.Disconnect(true);
}

12) Save the Solution.

Click File > Save All

13) Build the Solution

Right-click WpfApp1 in Solution Explorer > click Build.

14) Run the Program

Right-click WpfApp1 in Solution Explorer > click Debug > Start new instance.

OR

Figure 19 – Run your program from the Visual Studio toolbar.

NOTE: There are a range of Console Application and WPF Application code examples for each type of
Kinesis compatible device in the .NET API help file.

Thorlabs Motion Control – Kinesis with C# Glossary

Rev. A, March 27, 2017 Page 23

Glossary

DLL Dynamically linked library,
It is a type of assembly which contains classes and functionality
which can be invoked in your program. These are stored in your
Project

Build The primary function of Build is to compile your program into
Machine Code which can be ran by a computer. This will also
organise files such as DLLs in your project folder.

Framework A layered software structure containing components such as
programs, rules & support that can be built on by Software
Developers. The .NET Framework is a Windows framework
developed by Microsoft which includes a large class library which
can be accessed by code in different languages.

IDE Integrated Development Environment.
A software application used to write software. This will typically
contain a source code editor, build automation tools and a
debugger.

Console Application A lightweight application which can be output through a command-
line interface such as Command Prompt.

WPF Windows Presentation Foundation.
A .NET development framework (template) for building Desktop
client applications. WPF applications are versatile frameworks for
building interfaces and are typically programmed in C# and .xaml.

Solution A structure for organising projects in Visual Studio. The solution
maintains the state information for projects in .sln files.

Project The group of files which are needed to build & run a program or
collection of programs. These files are typically contained in a single
folder.

Namespace A way to organise classes hierarchically. These are typically .NET
Framework namespaces, such as the System.Windows namespace
where Windows is a class within the System Namespace. These
can also be user-defined namespaces such as
Thorlabs.MotionControl.DeviceManager from Thorlabs. By adding
reference to an assembly, you can list the namespace you wish to
use in a using statement to qualify types being used in your
program.

Class A template for creating or instantiating objects. This also contains
functions and properties which can changed or run by an object.

Device The Kinesis software term for the Kinesis compatible electronics
controller.

K-Cube The product line of compact Thorlabs electronic controllers
compatible with Kinesis software e.g. KDC101 - K-Cube Brushed
DC Servo Motor Controller

Stage/Actuator Motorised translation device driven by a Thorlabs controller.

Thorlabs Motion Control – Kinesis with C# Thorlabs Worldwide Contacts

Page 24

Thorlabs Worldwide Contacts
USA, Canada, and South America
Thorlabs, Inc.
56 Sparta Avenue
Newton, NJ 07860
USA
Tel: 973-300-3000
Fax: 973-300-3600
www.thorlabs.com
www.thorlabs.us (West Coast)
Email: sales@thorlabs.com
Support: techsupport@thorlabs.com

UK and Ireland
Thorlabs Ltd.
1 Saint Thomas Place
Ely CB7 4EX
Great Britain
Tel: +44 (0) 1353-654440
Fax: +44 (0) 1353-654444
www.thorlabs.com
Email: sales.uk@thorlabs.com
Support: techsupport.uk@thorlabs.com

Europe
Thorlabs GmbH
Hans-Böckler-Str. 6
85221 Dachau / Munich
Germany
Tel: +49-(0) 8131-5956-0
Fax: +49-(0) 8131-5956-99
www.thorlabs.de
Email: europe@thorlabs.com

Scandinavia
Thorlabs Sweden AB
Bergfotsgatan 7
431 35 Mölndal
Sweden
Tel: +46-31-733-30-00
Fax: +46-31-703-40-45
www.thorlabs.com
Email: scandinavia@thorlabs.com

France
Thorlabs SAS
109, rue des Côtes
78600 Maisons-Laffitte
France
Tel: +33 (0) 970 444 844
Fax: +33 (0) 825 744 800
www.thorlabs.com
Email: sales.fr@thorlabs.com

Brazil
Thorlabs Vendas de Fotônicos Ltda.
Rua Riachuelo, 171
São Carlos, SP 13560-110
Brazil
Tel: +55-16-3413 7062
Fax: +55-16-3413 7064
www.thorlabs.com
Email: brasil@thorlabs.com

Japan
Thorlabs Japan, Inc.
3-6-3 Kitamachi,
Nerima-ku, Tokyo 179-0081
Japan
Tel: +81-3-6915-7701
Fax: +81-3-6915-7716
www.thorlabs.co.jp
Email: sales@thorlabs.jp

China
Thorlabs China
Room A101, No. 100, Lane 2891,
South Qilianshan Road
Putuo District
Shanghai 200331
China
Tel: +86 (0) 21-60561122
Fax: +86 (0) 21-32513480
www.thorlabschina.cn
Email: chinasales@thorlabs.com

Thorlabs verifies our compliance with the WEEE (Waste Electrical and Electronic Equipment) directive of
the European Community and the corresponding national laws. Accordingly, all end users in the EC may
return “end of life” Annex I category electrical and electronic equipment sold after August 13, 2005 to
Thorlabs, without incurring disposal charges. Eligible units are marked with the crossed out “wheelie bin”
logo (see right), were sold to and are currently owned by a company or institute within the EC, and are
not dissembled or contaminated. Contact Thorlabs for more information. Waste treatment is your own
responsibility. “End of life” units must be returned to Thorlabs or handed to a company specializing in
waste recovery. Do not dispose of the unit in a litter bin or at a public waste disposal site. Annex I

http://www.thorlabs.com/
mailto:feedback@thorlabs.com
http://www.thorlabs./
http://www.thorlabs.com/
mailto:Europe@thorlabs.com
http://www.thorlabs.com/
http://www.thorlabs./
mailto:sales.fr@thorlabs.com
http://www.thorlabs.com/
http://www.thorlabs./

www.thorlabs.com

	Chapter 1 Scope
	Chapter 2 Getting Started
	2.1 Downloading Kinesis
	2.2 Kinesis Software
	2.3 DLL Files - “Which do I use and how do I make use of them?”
	2.4 Device Specific DLLs
	2.5 Native C DLLs and .NET Assemblies – what is the difference and should I care?
	2.6 Generic DLLs
	2.7 Where can I find a list of functions and properties?

	Chapter 3 Visual Studio
	3.1 Key Features
	3.2 Windows Workloads
	3.3 Inserting Line Numbers
	3.4 Changing your Project File Location

	Chapter 4 Examples
	4.1 Example 1 - Connect, Home, Move and Disconnect
	4.2 Example 2 – Running a Kinesis Instrument Panel in Visual Studio

	Glossary
	Thorlabs Worldwide Contacts

